PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Static Unbalance Analysis and Its Measurement System For Gimbals Axes of an Inertial Stabilization Platform

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To reduce the influence of the static unbalance on an infrared missile guidance system, a new static unbalance measure system for the gimbals axes has been developed. Considering the coupling effects caused by a mass eccentricity, the static balance condition and measure sequence for each gimbal axis are obtained. A novel static unbalance test approach is proposed after analyzing the dynamic model of the measured gimbal axis. This approach is to drive the measured gimbal axis to do sinusoidal reciprocating motion in a small angle and collect its drive currents in real time. Then the static unbalance of the measured gimbal axis can be obtained by the current multi-cycle integration. Also a measuring system using the proposed approach has been developed. A balanced simulator is used to verify the proposed approach by the load and repeatability tests. The results show the proposed approach enhances the efficiency of the static unbalance measurement, and the developed measuring system is able to achieve a high precision with a greater stability.
Rocznik
Strony
51--68
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wzory
Twórcy
autor
  • School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
autor
  • School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
Bibliografia
  • [1] Hilkert, J. M. (2008). Inertially stabilized platform technology concepts and principles. Control Systems, IEEE, 28(1), 26-46.
  • [2] Nguyen, H. Q. P., Kang, H. J., Suh, Y. S., Elle, O. J. (2012). A platform stabilization algorithm based on feed forward visual-inertial servoing. International Journal of Precision Engineering and Manufacturing,13(4), 517-526.
  • [3] Abdo, M. M., Vali, A. R., Toloei, A. R., Arvan, M. R. (2014). Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy ontroller. ISA Transactions, 53, 591-602.
  • [4] Ji, W., Li, Q., Xu, B., Zhao, D., Fang, S. X. (2011). Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system. Aerospace Science and Technology, 15, 25-32.
  • [5] Masten, M. K. (2008). Inertially stabilized platforms for optical imaging systems. Control Systems, IEEE, 28(1), 47-64.
  • [6] Kennedy, P. J., Kennedy, R. L. (2003). Direct versus indirect line of sight (LOS) stabilization. Control Systems Technology, IEEE Transactions on, 11(1), 3-15.
  • [7] Gajda, J., Sroka, R., Żegleń, T. (2007). Accuracy analysis of WIM systems calibrated using pre-weighed vehicles method. Metrology and Measurement Systems,14(4), 517-527.
  • [8] Yu, S., Zhao,Y. Z. (2010). A New Measurement Method for Unbalanced Moments in a Two-axis Gimbaled Seeker. Chinese Journal of Aeronautics, 23(1), 117-122.
  • [9] Kim, K. S. (2002). Eccentricity compensation in optical storage systems: Analysis and experiments.Japanese journal of applied physics, 41(10R), 6302.
  • [10] Kim, S., Ishimoto, T., Nakaoki, A., Kawakubo, O. (2008). Eccentricity Compensation Mechanism for Improving Reliability of Removable Performance in Near-Field Optical Disc Drive System. Japanese Journal of Applied Physics, 47(7), 5953-5954.
  • [11] Ebrahimi, B. M., Etemadrezaei, M., Faiz,J. (2011). Dynamic eccentricity fault diagnosis in round rotor synchronous motors. Energy Conversion and Management, 52 (5), 2092-2097.
  • [12] Penoyer, R. F. (2004). Automatic Torque Balance for Magnetic Anisotropy Measurements. Review of Scientific Instruments, 30 (8), 711-714.
  • [13] Zhou, S., Stephen, Dyer, S. W., Shin, K. K., Shi, J., Ni, J. (2004). Extended Influence Coefficient Method for Rotor Active Balancing During Acceleration. Journal of Dynamic Systems, Measurement, and Control, 126(1), 219-223.
  • [14] Kim, J. S., Lee S. H. (2003). The stability of active balancing control using influence coefficients for a variable rotor system. International Journal of Advanced Manufacturing Technology, 22(7-8),562-567.
  • [15] Moon, J. D., Kim, B. S., Lee, S. H. (2006). Development of the active balancing device for high-speed spindle system using influence coefficients. International Journal of Machine Tools and Manufacture, 46 (9), 978-987.
  • [16] Han, D. J. (2007). Generalized modal balancing for non-isotropic rotor systems. Mechanical Systems and Signal Processing, 21(5), 2137-2160.
  • [17] Deepthikumar, M. B., Sekhar, A. S., Srikanthan, M. R. (2013). Modal balancing of flexible rotors with bow and distributed unbalance. Journal of Sound and Vibration, 332(24), 6216-6233.
  • [18] Xu, B. G., Qu, L. S. (2001). A new practical modal method for rotor balancing. Proceedings of The Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 215(2), 179-189.
  • [19] Antonov, I. L. (2009). The influence of the inertial properties of the parts of gimbals on the dynamics of a rigid body. Journal of Applied Mathematics and Mechanics, 73(6), 631-636.
  • [20] Chung, J., Ro, D. S. (1999). Dynamic analysis of an automatic dynamic balancer for rotating mechanisms.Journal of Sound and vibration, 228(5), 1035-1056.
  • [21] Zhang, X. L., Wen, B. C., Zhao C. Y. (2014). Vibratory synchronization and coupling dynamic characteristics of multiple unbalanced rotors on a mass-spring rigid base. International Journal of Non- Linear Mechanics, 60, 1-8.
  • [22] Masry, S. E. (2003). Accuracy of Rotation around an Axis. Review of Scientific Instruments, 39(12), 1825-1828.
  • [23] Lin, Y. L., Chu, F.L. (2010). The dynamic behavior of a rotor system with a slant crack on the shaft.Mechanical Systems and Signal Processing, 24 (2), 522-545.
  • [24] Chasalevris, A., Papadopoulos, C. (2014). A novel semi-analytical method for the dynamics of nonlinear rotor-bearing systems. Mechanism and Machine Theory, 72, 39-59.
  • [25] Santolaria,J., Conte, J., Pueo, M., Javierre, C.( 2014). Rotation error modeling and identification for robot kinematic calibration by circle point method. Metrology and Measurement Systems, 21(1), 85-98.
  • [26] Vibet, C. (1995). Dynamics modeling of Lagrangian mechanisms from inertial matrix elements.Computer methods in applied mechanics and engineering, 123(1), 317-326.
  • [27] Ardeleanu, A., Ramos, P. (2011). Real time PC implementation of power quality monitoring system based on multiharmonic least-squares fitting. Metrology and Measurement Systems, 18(4), 543-556.
Uwagi
EN
This research is partially supported by the Major State Basic Research Development Program of China (No. 2014CB744200), the National Natural Science Foundation of China (No. 61233005), and the Fundamental Research Funds for the Central Universities, China (No. YWF-10-03-013), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (No. 20101102120041).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76c1ad33-c496-4852-bd4f-3f2aa66e84ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.