Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Self-crimp side-by-side bicomponent filaments (SBSBFs) were prepared via melt spinning using two kinds of polyethylene terephthalate (PET) with great disparity of intrinsic viscosity. The influence of the volume ratio on the surface morphology, crystallinity, crimping properties, mechanical properties and shrinkage properties of the bicomponent filaments was investigated using wide-angle X-ray diffraction, a differential scanning calorimetry (DSC), scanning electron microscope, etc. As the proportion of the low-viscosity component increases, the shrinkage in boiling water or hot air, as well as the shrinkage force and the sonic orientation factor of the bicomponent filaments decrease, and the DSC heating curves change from double peaks to a single peak. These phenomena should be ascribed to the high orientation and low crystallinity of the high-viscosity PET component and low orientation and high crystallinity of the low-viscosity PET component. Moreover, the crimp property of the bicomponent filament with a volume ratio of 50:50 is superior to those with other volume ratios.
Czasopismo
Rocznik
Tom
Strony
68--74
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
autor
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
Bibliografia
- 1. Xiao H, Shi MW, Liu LL. The Crystallinity and Orientation Structure and Crimp Properties of PET/PTT Bicomponent Filament. Advanced Materials Research 2013; 627(1): 110-116.
- 2. Chen SH, Wang SY. Effect of Thermal Stimuli on Physical Behaviors of PET/PTT Bicomponent Filament. Advanced Materials Research 2010; 129-131: 280-284.
- 3. Yang ZL, Wang FM. Dyeing and finishing performance of different PTT/PET bicomponent filament fabrics. Indian Journal of Fibre & Textile Research 2016; 41(4): 411-417.
- 4. Chen SH, Wang SY. Tensile and Fracture Behaviors of PET/PTT Side-Side Bicomponent Filament. International Journal of Polymer Analysis and Characterization 2010; 15(3): 147-154.
- 5. Fang Y, Wang CH, Liang HF, Bao LL et al. Theoretical and experimental study on the crimp mechanism of bi-component filament. Advanced Materials Research 2012; 476-478(0): 2209-2212.
- 6. Oh TH. Effects of Spinning and Drawing Conditions on the Crimp Contraction of Side-by-Side Poly(trimethylene terephthalate) Bicomponent Fibers. Journal of Applied Polymer Science 2010; 102(2): 1322-1327.
- 7. Oh TH. Melt Spinning and Drawing Process of PET Side-by-Side Bicomponent Fibers. Journal of Applied Polymer Science 2006; 101(3): 1362-1367.
- 8. Lai K, Chen MY, Sun RJ et al. Study on the Crimp Property of PTT/PET Bicomponent Filament. Advanced Materials Research 2013; 781-784(0): 2680-2684.
- 9. Rwei SP, Lin YT, Su YY. Study of Self-Crimp Polyester Fibers. Polymer Engineering and Science 2005; 45(6): 838–845.
- 10. Dention MJ. The Crimp Curvature of Bicomponent Fibers. Journal of the Textile Institute 1982; 73(6): 253-263.
- 11. Liu XS, Jiao SY, Wang FM. Configuring the spinning technology of PTT/PET bicomponent filaments according to fabric elasticity. Textile Research Journal 2013; 83(5): 487-498.
- 12. Luo J ,Xu GB, Wang FM. External Configuration and Crimp Parameters of PTT (Polytrimethylene terephthalate)/PET (Polyethylene terephthalate) Conjugated Fiber. Fibers and Polymers 2009; 10(4):508-512.
- 13. Chuah HH. Orientation and Structure Development in Poly(trimethylene terephthalate) Tensile Drawing. Macromolecules 2001; 34(20): 6985-6993.
- 14. Guo J, Zheng N,Chen YT. Study on Influence of Crimping Performance of PET/PTT Self-Crimp Yarn Treated with Moist Heat. Advanced Materials Research 2011; 287-290(0): 2547-2551.
- 15. Chen SH ,Wang SY. Latent-Crimp Behavior of PET/PTT Elastomultiester and a Concise Interpretation. Journal of Macromolecular Science, Part B: Physics. 2011; 50(7): 1447-1459.
- 16. Jiang ZH, Guo ZG , Zhang ZQ. Preparation and properties of bottle recycled polyethylene terephthalate (PET) filaments. Textil Research Journal 2018; 89(7): 1207-1214.
- 17. Ayad E, Cayla AL, Rault F et al. Influence of Rheological and Thermal Properties of Polymers During Melt Spinning on Bicomponent Fiber Morphology. Journal of Materials Engineering and Performance 2016; 25(8): 3296-3302.
- 18. Petraccone V, Rosa CD, Guerra G et al. On the Double Peak Shape of Melting Endotherms of Isothermally Crystallized Isotactic Polypropylene Samples. Die Makromolekulare Chemie Rapid Communications 1984; 5(10): 631.
- 19. Wang Y, Sun YM, Zhu ZY et al. XRD Study of PET Irradiated by 1.158 GeV Fe Ions. IMP and GIRFL Annual Report 2002; (1): 63.
- 20. Hu JC, Yang D, Chen P et al. Studies on The Crystallinity of PET by WAXD. Acta Polymerica Sinica 1990; (3): 283.
- 21. Ren MQ, Zhang ZY, Wu SZ et al. Uniaxial Orientation and Crystallization Behavior of Amorphous Poly (ethylene terephthalate) Fibers. Journal of Polymer Research 2006; 13(1): 9-15.
- 22. Mehdi Z, Mojtaba S. Isothermal Crystallization Kinetics of Poly(Ethylene Terephthalate)S of Different Molecular Weights. Journal of the Iranian Chemical Society 2013; 10(1): 77-84.
- 23. Zhu PP, Ma DZ. Study on the Double Cold Crystallization Peaks of Poly (Ethylene Terephthalate) (PET): 2. Samples Isothermally Crystallized At High Temperature. European Polymer Journal 1999; 35(4): 739-742.
- 24. Xiao H, Shi MW, Liu LL et al. The Structures and Properties of PET (Polyethylene Terephthalate) /PTT (Polytrimethylene Terephthalate) Self-Crimp Filament at Different Temperatures. Advanced Materials Research 2011; 332-334(0): 239-245.
- 25. Wu AH, Xu GP, Luo GH et al. Study of the Mechanical Properties and Releasing Anion Capacity of Anionic Functional PET Fiber. Applied Mechanics and Material 2013; 423-426(0): 322-325.
- 26. Zhang X, Tian XY, Yao XY et al. Isothermal and Non-Isothermal Shrinkage Behaviors of Highly Oriented PET Yarns. Fibers and Polymers 2008; 9(3): 360-364.
- 27. Rim PB, Nelson CJ. Properties of PET Fibers with High Modulus and Low Shrinkage (HMLS). I. Yarn Properties and Morphology. Applied Polymer. Sci. 2010; 42(7): 1807-1813.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76acb69e-0ec1-4df2-a2ab-43393beec5e6