PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tectonic-climatic interactions during changes of depositional environments in the Carpathian foreland: an example from the Neogene of central Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many geological problems have not been convincingly explained so far and are debatable, for instance the origin and changes of the Neogene depositional environments in central Poland. Therefore, these changes have been reconstructed in terms of global to local tectonic and climatic fluctuations. The examined Neogene deposits are divided into a sub-lignite unit (Koźmin Formation), a lignite-bearing unit (Grey Clays Member), and a supra-lignite unit (Wielkopolska Member). The two lithostratigraphic members constitute the Poznań Formation. The results of facies analysis show that the Koźmin Formation was deposited by relatively high-gradient and well-drained braided rivers. Most likely, they encompassed widespread alluvial plains. In the case of the Grey Clays Member, the type of river in close proximity to which the mid-Miocene low-lying mires existed and then were transformed into the first Mid-Miocene Lignite Seam (MPLS-1), has not been resolved. The obtained results confirm the formation of the Wielkopolska Member by low-gradient, but mostly well-drained anastomosing or anastomosing-to-meandering rivers. The depositional evolution of the examined successions depended on tectonic and climatic changes that may be closely related to the mid-Miocene great tectonic remodelling of the Alpine-Carpathian orogen. This resulted in palaeogeographic changes in its foreland in the form of limiting the flow of wet air and water masses from the south and vertical tectonic movements.
Rocznik
Strony
519--542
Opis fizyczny
Bibliogr. 156 poz., rys., tab.
Twórcy
autor
  • Adam Mickiewicz University, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  • Polish Geological Institute - National Research Institute, Marine Geology Branch, Kościerska 5, 80-328 Gdańsk, Poland
  • Konin Lignite Mine, 600-lecia 9, 62-540 Kleczew, Poland
  • Achim.Bechtel@outlook.de Montanuniversitaet Leoben, Austria, Department of Applied Geosciences and Geophysics, Peter-Tunner-Str. 5, A-8700 Leoben, Austria
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
Bibliografia
  • 1. Allen, J.R.L. 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89–191.
  • 2. Allen, J.R.L. 1983. Studies in fluviatile sedimentation: Bars, Bar-complexes and sandstone sheets (low sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33, 237–293.
  • 3. Andreucci, B., Castelluccio A., Jankowski, L., Mazzoli S., Szaniawski R. and Zattin M. 2013. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension. Tectonophysics, 608, 866–883.
  • 4. ASTM D 388:2005. Standard Classification of Coals by Rank. American Society for Testing and Materials.
  • 5. Barnes, BV. 1991. Deciduous forests of North America. In: Röhrig, E., Ulrich, B. (Eds), Temperate deciduous forests. Ecosystems of the World 7, 219–344. Elsevier; Amsterdam.
  • 6. Bechtel, A., Widera, M. and Woszczyk, M. 2019. Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relationships with vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum. Organic Geochemistry, 138, 103908.
  • 7. Bechtel, A., Widera, M., Lücke, A., Groß, D. and Woszczyk, M. 2020. Petrological and geochemical characteristics of xylites from the First Lusatian lignite seam (Konin Basin, Poland): implications for floral sources, decomposition and environmental conditions. Organic Geochemistry, 147, 104052.
  • 8. Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389–401.
  • 9. Bridge, J.S. 1993. Description and interpretation of fluvial deposits. Sedimentology, 40, 801–810.
  • 10. Bridge, J.S. 2003. Rivers and Floodplains; Forms, Processes, and Sedimentary Record: Massachusetts. Blackwell Publishing; Malden.
  • 11. Bristow, C.S. and Best, J.L. 1993. Braided rivers: perspectives and problems. In: Best, J.L. and Bristow, C.S. (Eds), Braided Rivers. Geological Society, London, Special Publications, 75, 1–11.
  • 12. Bristow, C.S., Skelly, R.L. and Ethridge, F.G. 1999. Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology, 46, 1029–1047.
  • 13. Bruch, A.A., Uhl, D. and Mosbrugger, V. 2007. Miocene climate in Europe-Patterns and evolution. A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 1–7.
  • 14. Bukowski, K., de Leeuw, A., Gonera, M., Kuiper, K.F., Krzywiec, P. and Peryt, D. 2010. Badenian tuffite levels within the Carpathian orogenic front (Gdów-Bochnia area, Southern Poland): radio-isotopic dating and strati graphic position. Geological Quarterly, 54, 449–464.
  • 15. Bukowski, K., Sant, K., Pilarz, M., Kuiper, K. and Garecka, M. 2018. Radio-isotopic age and biostratigraphic position of a lower Badenian tuffite from the western Polish Carpathian Foredeep Basin (Cieszyn area). Geological Quarterly, 62, 303–318.
  • 16. Burns, C., Mountney, N.P., Hodgson, D.M. and Colombera, L. 2017. Anatomy and dimensions of fluvial crevasse-splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A. Sedimentary Geology, 351, 21–35.
  • 17. Chomiak, L. 2020a. Architecture, sedimentology and depositional model for the formation of crevasse splays within a lignite seam at the Tomisławice opencast mine near Konin in central Poland. Geologos, 26, 18–32.
  • 18. Chomiak, L. 2020b. Variation of lignite ash in vertical and horizontal sections of mining walls in the Konin Lignite Mine, central Poland. Geology, Geophysics and Environment, 46, 17–28.
  • 19. Chomiak, L., Maciaszek, P., Wachocki, R., Widera, M. and Zieliński, T. 2019. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland). Geological Quarterly, 63, 162–177.
  • 20. Chomiak, L., Urbański, P. and Widera, M. 2020. Geological record of the lacustrine stage in the evolution of the Mid-Miocene mire – the Tomisławice lignite opencast near Konin in central Poland. Przegląd Geologiczny, 68, 526–534. [In Polish with English summary]
  • 21. Chomiak, L. and Widera, M. 2020. A comparative study of the oxide and elemental composition of ash from lignite burned at various temperatures – Konin Lignite Mine, central Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36, 145–160.
  • 22. Colombera, L., Arévalo, O.J. and Mountney, N.P. 2017. Fluvial-system response to climate change: The Paleocene–Eocene Tremp Group, Pyrenees, Spain. Global and Planetary Change, 157, 1–17.
  • 23. Czapowski, G. and Kasiński, J.R. 2002. Facies and conditions of deposition of the Poznań formation. Przegląd Geologiczny, 50, 256–257. [In Polish]
  • 24. Dadlez, R., Marek, S. and Pokorski, J. (Eds) 2000. Geological map of Poland without Cenozoic deposits at a scale 1:1,000,000. Polish Geological Institute; Warsaw.
  • 25. Davies-Vollum, K.S. and Kraus, M.J. 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology, 140, 235–245.
  • 26. De Leeuw, A., Bukowski, K., Krijgsman, W. and Kuiper, K.F. 2010. Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology, 38, 715–718.
  • 27. Diessel, C. 1992. Coal-Bearing Depositional Systems, 721 pp. Springer-Verlag; Berlin.
  • 28. Doláková, N., Kováčová, M. and Utescher, T. 2021. Vegetation and climate changes during the Miocene climatic optimum and Miocene climatic transition in the northwestern part of Central Paratethys. Geological Journal, 56, 729–743.
  • 29. ECE-UN, 1998. International classification of in-seam coals. ECE-UN Geneva, UN; New York.
  • 30. Farrell, K.M. 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology, 139, 93–150.
  • 31. Fielding, C.R. 2006. Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190, 227–240.
  • 32. Flores, R.M. 1986. Styles of coal deposition in Tertiary alluvial deposits, Powder River Basin, Montana and Wyoming. In: Lyons, P.C., Rice, C.L. (Eds), Paleoenvironmental and Tectonic Controls in Coal-forming Basins of the United States. Geological Society of America, Special Paper 210, 79–104.
  • 33. Flores, R.M. and Hanley, J.H. 1984. Anastomosed and associated coal-bearing fluvial deposits: Upper Tongue Member, Paleocene Fort Union Formation, northern Powder River Basin, Wyoming, U.S.A. In: Rahmani, R.A., Flores, R.M. (Eds), Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists, Special Publications, 7, 85–104.
  • 34. Fodor, L., Csontos, L., Bada, G., Györfi, I. and Benkovics, L. 1999. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand, B., Jolivet, L., Horvath, F., Seranne, M. (Eds), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 295–334.
  • 35. Gawthorpe, R.L. and Leeder, M.R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
  • 36. Gębica, P. and Sokołowski, T. 2001. Sedimentological interpretation of crevasse splays formed during the extreme 1997 flood in the upper Vistula river valley (South Poland). Anna les Societatis Geologorum Poloniae, 71, 53–62.
  • 37. Ghibaudo, G. 1992. Subaqueous sediment gravity flow deposits: practical criteria for their field description and classification. Sedimentology, 39, 423–454.
  • 38. Gibbard, P.L. and Lewin, J. 2016. Filling the North Sea Basin: Cenozoic sediment sources and river styles. Geologica Belgica, 19, 201–217.
  • 39. Gibling, M.R. 2006. Width and thickness of channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research, 76, 731–770.
  • 40. Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381, 235–273.
  • 41. Grimm, K., Grimm, M., Huss, M., Jansen, F., Prüfert, A., Gürs, K., Lietzow, A., Ritzkowski, S., Standke, G., Blumenstengel, H., Bülow, W., Hottenrot, M., Doppler, G., Heissig, K., Reichenbacher, B. and Schwerd, K. 2002. Tertiary. In: German Stratigraphic Commission (Ed.), Stratigraphic Table of Germany 2002.
  • 42. Guion, P.D. 1984. Crevasse splay deposits and roof-rock quality in the Threequarters Seam (Carboniferous) in the East Midlands Coalfield, U.K. Sedimentology of Coal and Coal-bearing Sequences. In: Rahmani, R.A., Flores, R.M. (Eds), Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists, Special Publications, 7, 291–308.
  • 43. Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H.-G. and Sachsenhofer, R. 2012. Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria and Salzburg). Geologica Carpathica, 63, 295–305.
  • 44. Hernández-Ballarín, V. and Peláez-Campomanes, P. 2017. Impact of global climate in the diversity patterns of middle Miocene rodents from the Madrid Basin (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 472, 108–118.
  • 45. Holcová, K., Doláková, N., Nehyba, S. and Vacek, F. 2018. Timing of Langhian bioevents in the Carpathian Foredeep and northern Pannonian Basin in relation to oceanographic, tectonic and climatic processes. Geological Quarterly, 62, 3–17.
  • 46. Horne, J.C., Ferm, J.C., Caruccio, F.T. and Baganz, B.P. 1978. Depositional models in coal exploration and mine planning in Appalachian Region. American Association of Petroleum Geologists Bulletin, 62, 2379–2411.
  • 47. Ielpi, A. and Ghinassi, M. 2015. Planview style and palaeodrainage of Torridonian channel belts: applecross formation, Stoer Peninsula, Scotland. Sedimentary Geology, 325, 1–16.
  • 48. Ivanov, D. and Worobiec, E. 2017. Middle Miocene (Badenian) vegetation and climate dynamics in Bulgaria and Poland based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 83–94.
  • 49. Jankowski, L. and Margielewski, W. 2015. Tectonic position of the Roztocze region in the light of the evolution history of the Carpathian Foredeep. Biuletyn Państwowego Instytutu Geo logicznego, 462, 7–28. [In Polish with English summary]
  • 50. Jankowski, L. and Wysocka, A. 2019. Occurrence of clastic injectites in the Oligocene strata of the Carpathians and their significance in unravelling the Paleogene and Neogene evolution of the Carpathian orogeny (Poland, Ukraine and Romania). Geological Quarterly, 63, 106–125.
  • 51. Janssen, R., Doppler, G., Grimm, K., Grimm, M., Haas, U., Hiss, M., Köthe, A., Radtke, G., Reichenbacher, B., Salamon, M., Standke, G., Teipel, U., Thomas, M., Uffenorde, H., Wielandt-Schuster, U. and Subkommission Tertiär-Stratigraphie 2018. Das Tertiär in der Stratigraphischen Tabelle von Deutschland 2016/The Tertiary in the Stratigraphic Table of Germany 2016 (STG 2016). Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences), 169, 267–294.
  • 52. Jarosiński, M., Poprawa, P. and Ziegler, P.A. 2009. Cenozoic dynamic evolution of the Polish Platform. Geological Quarterly, 53, 3–26.
  • 53. Karnkowski, P.H. 1980. The paleotectonic of platform cover in the Wielkopolska. Przegląd Geologiczny, 28, 146–151. [In Polish with English summary]
  • 54. Kasiński, J.R. 1989. Lacustrine sedimentary sequences in the Polish Miocene lignite-bearing basins – Facies distribution and sedimentary development. Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 287–304.
  • 55. Kasiński, J.R., Piwocki, M., Swadowska, E. and Ziembińska-Tworzydło, M. 2010. Lignite of the Polish Lowlands Miocene: characteristics on a base of selected profiles. Biuletyn Państwowego Instytutu Geologicznego, 439, 99–153. [In Polish with English summary]
  • 56. Kasiński, J.R. and Słodkowska, B. 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60, 959–974.
  • 57. Kley, J. and Voigt, T. 2008. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839–842.
  • 58. Kolcon, I. and Sachsenhofer, R.F. 1999. Petrography, palynology and depositional environments of the early Miocene Oberdorf lignite seam (Styrian Basin, Austria). International Journal of Coal Geology, 41, 275–308.
  • 59. Kováč, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, Ľ. and Studencka, B. 2007. Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58, 579–606.
  • 60. Kováč, M., Márton, E., Oszczypko, N., Vojtko, R., Hók, J., Králiková, S., Plašienka, D., Klučiar, T., Hudáčková, N. and Oszczypko-Clowes, M. 2017a. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 155, 133–154.
  • 61. Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., Báldi, K., Less, G., Nagymarosy, A., Ruman, A., Klučiar, T. and Jamrich,M. 2017b. The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9, 75–114.
  • 62. Kraus, M.J. and Hasiotis, S.T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.
  • 63. Krzywiec, P. 2001. Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian foredeep basin – results of seismic data interpretation. Marine and Petroleum Geology, 18, 13–38.
  • 64. Krzywiec, P. 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough – lateral variations in timing and structural style. Geological Quarterly, 50, 151–168.
  • 65. Kus, J. and Misz-Kennan, M. 2017. Coal weathering and laboratory (artificial) coal oxidation. International Journal of Coal Geology, 171, 12–36.
  • 66. Kwiecińska, B. and Wagner, M. 1997. Classification of qualitative features of brown coal from Polish deposits according to petrographical, chemical and technological criteria. Wydaw nictwo Centrum PPGSMiE Polskiej Akademii Nauk; Kra ków. [In Polish with English summary]
  • 67. Kwiecińska, B. and Wagner, M. 2001. Application of reflectance in natural and technological classification of brown coal (lignite), 99 pp. Wydawnictwo Akademii Górniczo-Hutniczej; Kraków. [In Polish with English summary]
  • 68. Leclair, S.F. and Bridge, J.S. 2001. Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, 71, 713–716.
  • 69. Lücke, A., Helle, G., Schleser, G.H., Figueiral, I., Mosbrugger, V., Jones, T.P. and Rowe, N.P. 1999. Environmental his tory of the German lower Rhine embayment during the Middle Miocene as reflected by carbon isotope in brown coal. Palaeo geography, Palaeoclimatology, Palaeoeco logy, 154, 339–352.
  • 70. Mach, K., Sýkorová, I., Konzalová, M. and Opluštil, S. 2013. Effect of relative lake-level changes in mire-lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology, 105, 120–136.
  • 71. Maciaszek, P., Chomiak, L., Wachocki, R. and Widera, M. 2019. The interpretive significance of ripple-derived sedimentary structures within the late Neogene fluvial succession, central Poland. Geologos, 25, 1–13.
  • 72. Maciaszek, P., Chomiak, L., Urbański, P. and Widera, M. 2020. New insights into the genesis of the “Poznań Clays” – upper Neogene of Poland. Civil and Environmental Engineering Reports, 30, 18–32.
  • 73. Makaske, B. 2001. Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Science Reviews, 53, 149–196.
  • 74. Markič, M. and Sachsenhofer, R.F. 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33, 229–254.
  • 75. Markič, M., Zavšek, S., Pezdič, J., Skaberne, D. and Kočevar, M. 2001. Macropetrographic Characterization of the Velenje Lignite (Slovenia). Acta Universitatis Carolinae, Geologica, 45, 81–97.
  • 76. Martin, A.J. 2000. Flaser and wavy bedding in ephemeral streams: a modern and an ancient example. Sedimentary Geology, 136, 1–5.
  • 77. McCabe, P.J. 1984. Depositional models of coal and coal-bearing strata. In: Rahmani, R.A., Flores, R.M. (Eds), Sedimentology of Coal and Coal-Bearing Sequences. International Association of Sedimentologists, Special Publications, 7, 13–42.
  • 78. McCabe, P. and Parrish, J. 1992. Tectonic and climatic controls on the distribution and quality of Cretaceous coals. Geological Society of America, Special Publications, 267, 1–15.
  • 79. Miall, A.D. 1977. A review of the braided-river depositional environment. Earth-Science Reviews, 13, 1–62.
  • 80. Miall, A.D. 1996. The Geology of Fluvial Deposits, xvi + 582 pp. Springer-Verlag; Berlin.
  • 81. Michaelsen, P., Henderson, R.A., Crosdale, P.J. and Mikkelsen, S.O. 2000. Facies architecture and depositional dynamics of the Upper Permian Rangal Coal Measures, Bowen Basin, Australia. Journal of Sedimentary Research, 70, 879–895.
  • 82. Michon, L., van Balen, R.T., Merle, O. and Pagnier, H. 2003. The Cenozoic evolution of the Roer Valley rift system integrated at European scale. Tectonophysics, 367, 101–126.
  • 83. Mosbrugger, V., Utescher, T. and Dilcher, D. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102, 14964–14969.
  • 84. Nadon, G.C. 1994. The genesis and recognition of anastomosed fluvial deposits: data from the St. Mary River Formation, southwestern Alberta, Canada. Journal of Sedimentary Research, 64, 451–463.
  • 85. North, C.P., Nanson, G.C. and Fagan, S.D. 2007. Recognition of the sedimentary architecture of dryland anabranching (anastomosing) rivers. Journal of Sedimentary Research, 77, 925–938.
  • 86. Novák, A., Bábek, O. and Kapusta J. 2017. Late Quaternary tectonic switching of siliciclastic provenance in the strike-slip-dominated foreland of the Western Carpathians; Upper Morava Basin, Bohemian Massif. Sedimentary Geo logy, 355, 58–74.
  • 87. Oszczypko, N. 2006. Late Jurassic–Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169–194.
  • 88. Peryt, T.M. 2006. The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sedimentary Geology, 188-189, 379–396.
  • 89. Peryt, T. and Piwocki, M. (Eds) 2004. Polish Geology 1, Stratigraphy 3a, Cenozoic–Paleogene, Neogene, 368 pp. Polish Geological Institute; Warszawa. [In Polish]
  • 90. Pharaoh, T. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone, a review. Tectonophysics, 314, 17–41.
  • 91. Piwocki, M., Badura, J. and Przybylski, B. 2004. Neogene. In: Peryt, T. and Piwocki, M. (Eds), Polish Geology 1, Stratigraphy 3a, Cenozoic–Paleogene, Neogene, 71–133. Polish Geological Institute; Warszawa. [In Polish]
  • 92. Piwocki, M. and Ziembińska-Tworzydło, M. 1997. Neogene of the Polish Lowlands – lithostratigraphy and pollen-spore zones. Geological Quarterly, 41, 21–40.
  • 93. Planderová, E., Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Konzalova, M., Nagy, E., Rylova, T., Sadowska, A., Słodkowska, B., Stuchlik, L., Syabryaj, S., Ważyńska, H. and Zdrazilkova, N. 1993. On paleofloristic and paleoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. In: Paleofloristic and paleoclimatic changes during Cretaceous and Tertiary. Proceedings of the International Symposium, 119–129. Geological Institute of Dionýz Štúr; Bratislava.
  • 94. Plašienka, D., Grecula, P, Putiš, M., Hovorka, D. and Kováč, M. 1997. Evolution and structure of the Western Carpathians: an overview. In: Grecula, P. Hovorka, D., Putiš M. (Eds), Geological Evolution of the Western Carpathians, 1–24. Mineralia Slovaca Monograph; Bratislava.
  • 95. Rajchl, M., Uličný, D., Grygar, R. and Mach, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research, 21, 269–294.
  • 96. Rajchl, M., Uličný, D. and Mach, K. 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology, 55, 1419–1447.
  • 97. Reineck, H.E. and Singh, I.B. 1980. Depositional Sedimentary Environments. Springer-Verlag; Berlin.
  • 98. Sant, K., Palcu, D.V., Turco, E., Di Stefano, A., Baldassini, N., Kouwenhoven, T., Kuiper, K.F. and Krijgsman, W. 2019. The mid-Langhian flooding in the eastern Central Paratethys: integrated stratigraphic data from the Transylvanian Basin and SE Carpathian Foredeep. International Journal of Earth Sciences, 108, 2209–2232.
  • 99. Schäfer, A. and Utescher, T. 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences), 165, 287–314.
  • 100. Schäfer, A., Utescher, T., Klett, M. and Valdivia-Manchego, M. 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94, 621–639.
  • 101. Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. and Ustaszewski, K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
  • 102. Schneider, W. 1992. Floral successions in Miocene swamps and bogs of central Europe. Zeitschrift für Geologische Wissenschaften, 20, 555–570.
  • 103. Shepard, F.P. 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24, 151–158.
  • 104. Shukla, U.K. 2009. Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain. India. International Journal of Earth Sciences, 98, 443–459.
  • 105. Sijp, W.P., von der Heydt, A.S., Dijkstra, H.A., Flögel, S., Douglas, P.M.J. and Bijl, P.K. 2014. The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 119, 1–22.
  • 106. Słodkowska, B. and Kasiński, J.R. 2016. Paleogene and Neogene – a time of dynamic changes of climate. Przegląd Geologiczny, 64, 15–25. [In Polish with English summary]
  • 107. Słodkowska, B. and Widera, M. 2021. Vegetation response to environmental changes based on the palynological research of the Middle Miocene lignite in the Jóźwin IIB opencast mine (Konin region, central Poland). Annales Societatis Geolo gorum Poloniae, 91, in press. doi: 10.14241/asgp.2021.07
  • 108. Smith, D.G. and Smith, N.D. 1980. Sedimentation in anastomosed river systems: examples from alluvial valleys near Banff, Alberta. Journal of Sedimentary Research, 50, 157–164.
  • 109. Standke, G., Rascher, J. and Strauss, C. 1993. Relative sea-level fluctuations and brown coal formations around the Early–Middle Miocene boundary in the Lusatian Brown Coal District. Geologische Rundschau (International Journal of Earth Sciences), 82, 295–305.
  • 110. Śmigielski, M., Sinclair, H.D., Stuart, F.M., Persano, C. and Krzywiec, P. 2016. Exhumation history of the Tatry Mountains, Western Carpathians, constrained by low-temperature thermochronology. Tectonics, 35, 187–207.
  • 111. Šujan, M., Braucher, R., Tibenský, M., Fordinál, K., Rybár, S. and Kováč, M. 2020. Effects of spatially variable accommodation rate on channel belt distribution in an alluvial sequence: Authigenic 10Be/9Be-based Bayesian age-depth models applied to the upper Miocene Volkovce Fm. (northern Pannonian Basin System, Slovakia). Sedimentary Geology, 397, 105566.
  • 112. Šujan, M., Kováč, M., Hók, J., Šujan, M., Braucher, R., Rybár, S. and de Leeuw, A. 2017. Late Miocene fluvial distributary system in the northern Danube Basin (Pannonian Basin System): depositional processes, stratigraphic architecture and controlling factors of the Piešťany Member (Volkovce Formation). Geological Quarterly, 61, 521–548.
  • 113. Šujan, M., Rybár, S., Kováč, M., Bielik, M., Majcin, D., Minár, J., Plašienka, D., Nováková, P., and Kotulová, J. 2021. The polyphase rifting and inversion of the Danube Basin revised. Global and Planetary Change, 196, 103375.
  • 114. Teichmüller, M. 1958. Rekonstruktion verschiedener Moortypen des Hauptflözes der Niederrheinischen Braunkohle. Fortschritte in der Geologie von Rheinland und Westfalen, 2, 599–612.
  • 115. Teichmüller, M. 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12, 1–87.
  • 116. Teisseyre, A.K. 1985. Recent overbank deposits of the Sudetic valleys, SW Poland. Part I: general environmental characteristics (with examples from the upper River Bóbr drainage basin). Geologica Sudetica, 20, 113–195.
  • 117. Ticleanu, N., Scradeanu, D., Popa, M., Milutinovici, S., Popa, R., Preda, I., Ticleanu, M., Savu, C., Diaconita, D., Barus, T., Petrescu, I., Dinulescu, C. and Maftei, R. 1999. The relation between the lithotypes of Pliocene coals from Oltenia and their main quality characteristics. Bulletin of the Czech Geological Survey, 74, 169–174.
  • 118. Urbański, P. and Widera, M. 2016. Geology of lignite deposits in the south-western Wielkopolska region. Przegląd Geologiczny, 64, 791–798. [In Polish with English summary]
  • 119. Utescher, T., Ashraf, A.R., Kern, A.K. and Mosbrugger, V. 2021. Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat-forming vegetation and continental climate variability. Geological Journal, 56, 768–785.
  • 120. Utescher, T., Mosbrugger, V., Ivanov, D. and Dilcher, D.L. 2009. Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters, 284, 544–552.
  • 121. Van Asselen, S. 2011. The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas. Basin Research, 23, 239–255.
  • 122. Vassilev, S.V., Kitano, K. and Vassileva, C.G. 1997. Relations between ash yield and chemical and mineral composition of coals. Fuel, 76, 3–8.
  • 123. Vinken, R. (compiler) 1988. The Northwest European Tertiary basin, results of the IGCP Project No. 124. Geologisches Jahrbuch, A 100.
  • 124. Wachocki, R., Chomiak, L. and Widera, M. 2020. Tectonic and sedimentary deformational structures within the first Mid-Polish lignite seam – Konin Basin, central Poland. IOP Conference Series: Earth and Environmental Science, 609, 012019.
  • 125. Wagner, M. 1984. Clay kaolinite (paratonstein) rocks from the Bełchatów brown coal deposit. Kwartalnik Geologiczny, 25, 111–120. [In Polish with English summary]
  • 126. Wagner, M., Bielowicz, B. and Misiak, J. 2019. Analysis of the occurrence of critical elements and raw materials in Polish lignite deposits with particular emphasis on coal ashes. In: 2nd International Conference on the Sustainable Energy and Environmental Development. IOP Conference Series: Earth and Environmental Science, 214, 012026.
  • 127. Wang, S., Shao, L., Wang, D., Hilton, J., Guo, B. and Lu, J. 2020. Controls on accumulation of anomalously thick coals: Implications for sequence stratigraphic analysis. Sedimentology, 67, 991–1013.
  • 128. Widera, M. 2007. Lithostratigraphy and palaeotectonics of the sub-Pleistocene Cenozoic of Wielkopolska, 224 p. Adam Mickiewicz University Press; Poznań. [In Polish with English summary]
  • 129. Widera, M. 2010. The morphology of fossil pebbles as a tool for determining their transport processes (Koźmin South lignite open-cast pit, central Poland). Annales Societatis Geologorum Poloniae, 80, 315–325.
  • 130. Widera, M. 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos, 18, 1–11.
  • 131. Widera, M. 2013a. Sand- and mud-filled fluvial palaeochannels in the Wielkopolska Member of the Neogene Poznań Formation, central Poland. Annales Societatis Geologorum Poloniae, 83, 19–28.
  • 132. Widera, M. 2013b. Changes of the lignite seam architecture – a case study from Polish lignite deposits. International Journal of Coal Geology, 114, 60–73.
  • 133. Widera, M. 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65, 367–368.
  • 134. Widera, M. 2016a. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: new evidence from Middle Miocene deposits of central Poland. Sedimentary Geology, 335, 150–165.
  • 135. Widera, M. 2016b. An overview of lithotype associations forming the exploited lignite seams in Poland. Geologos, 22, 213–225.
  • 136. Widera, M. 2018. Tectonic and glaciotectonic deformations in the areas of Polish lignite deposits. Civil and Environmental Engineering Reports, 28, 182–193.
  • 137. Widera, M. 2019. What can be learned about the deposition and compaction of peat from the Miocene lignite seam exposed in the Chłapowo Cliff on the Polish coast of the Baltic Sea? Geology, Geophysics and Environment, 45, 111–119.
  • 138. Widera, M. 2020. Slump folds within the mid-Miocene crevasse-splay deposits: a unique example from the Tomisławice lignite opencast in central Poland. Geological Quarterly, 64, 711–722.
  • 139. Widera, M., Bechtel, A., Chomiak, L., Maciaszek, P., Słodkowska, B., Wachocki, R., Worobiec, E., Worobiec, G. and Zieliński, T. 2021. Palaeoenvironmental reconstruction of the Konin Basin (central Poland) during lignite accumulation linked to the Mid-Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110307.
  • 140. Widera, M., Chomiak, L., Gradecki, D. and Wachocki, R. 2017b. Crevasse splay deposits from the Miocene of central Poland near Konin. Przegląd Geologiczny, 65, 251–258. [In Polish with English summary]
  • 141. Widera, M., Chomiak, L. and Zieliński, T. 2019b. Sedimentary facies, processes and paleochannel pattern of an anastomosing river system: an example from the Upper Neogene of Central Poland. Journal of Sedimentary Research, 89, 487–507.
  • 142. Widera, M., Ćwikliński, W. and Karman, R. 2008. Cenozoic tectonic evolution of the Poznań-Oleśnica Fault Zone, central-western Poland. Acta Geologica Polonica, 58, 455–471.
  • 143. Widera, M., Jachna-Filipczuk, G., Kozula, R. and Mazurek, S. 2007. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. International Journal of Earth Sciences, 96, 947–955.
  • 144. Widera, M. and Kita, A. 2007. Paleogene marginal marine sedimentation in central-western Poland. Geological Quarterly, 51, 79–90.
  • 145. Widera, M., Kowalska, E. and Fortuna, M. 2017a. A Miocene anastomosing river system in the area of Konin Lignite Mine, central Poland. Annales Societatis Geologorum Poloniae, 87, 157–168.
  • 146. Widera, M., Stawikowski, W. and Uścinowicz, G. 2019a. Paleogene–Neogene tectonic evolution of the lignite-rich Szamotuły Graben. Acta Geologica Polonica, 69, 387–401.
  • 147. Worobiec, E., Widera, M., Worobiec, G. and Kurdziel, B. 2021. Middle Miocene palynoflora from the Adamów lignite deposit, central Poland. Palynology, 45, 59–71.
  • 148. Worobiec, G, Worobiec, E. and Kasiński, J.R. 2008. Plant assemblages of the drill cores from the Neogene Ruja lignite deposit near Legnica (Lower Silesia, Poland). Acta Palaeobotanica, 48, 191–275.
  • 149. Wysocka, A., Radwański, A., Górka, M., Babel, M., Radwańska, U. and Złotnik, M. 2016. The Middle Miocene of the Fore- Carpathian Basin (Poland, Ukraine and Moldova). Acta Geologica Polonica, 66, 351–401.
  • 150. Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
  • 151. Zachos, J.C., Dickens, G.R. and Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.
  • 152. Zagwijn, W.H. and Hager, H. 1987. Correlations of continental and marine Neogene deposits in the south-eastern Netherlands and the Lower Rhine District. Mededelingen van de werkgroep voor tertiaire en kwartaire geologie, 24, 59–78.
  • 153. Ziegler, P.A. and Dèzes, P. 2007. Cenozoic uplift of Variscan massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58, 237–269.
  • 154. Zieliński, T. 2014. Sedimentology. River and lake deposits, 594 p. Adam Mickiewicz University Press; Poznań. [In Polish]
  • 155. Zieliński, T. and Widera, M. 2020. Anastomosing-to-meandering transitional river in sedimentary record: A case study from the Neogene of central Poland. Sedimentary Geology, 404, 105677.
  • 156. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Tectonic subdivision of Poland, 60 p. The Committee of Geological Sciences of the Polish Academy of Sciences; Wrocław. [In Polish]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76abfe7b-31d3-4c19-9b6a-efd78609ae4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.