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Abstract—Automatic optimization of application-specific
instruction-set processor (ASIP) architectures mostly focuses
on the internal memory hierarchy design, or the extension
of reduced instruction-set architectures with complex custom
operations. This paper focuses on very long instruction word
(VLIW) architectures and, more specifically, on automating the
selection of an application specific VLIW issue-width. The issue-
width selection strongly influences all the important processor
properties (e.g. processing speed, silicon area, and power
consumption). Therefore, an accurate and efficient issue-width
estimation and optimization are some of the most important
aspects of VLIW ASIP design. In this paper, we first compare
different methods for the estimation of required the issue-width,
and subsequently introduce a new force-based parallelism
estimation method which is capable of estimating the required
issue-width with only 3% error on average. Furthermore, we
present and compare two techniques for estimating the required
issue-width of software pipelined loop kernels and show that a
simple utilization-based measure provides an error margin of
less than 1% on average.

Index Terms—design automation, parallelism estimation, very-
long instruction word

I. INTRODUCTION

H IGHLY customized application specific instruction-set

processors (ASIPs) are increasingly used in advanced

products requiring programmability, high-performance, and/or

a limited energy consumption. Several industrial strength tool-

flows, e.g. [2]–[6], are available to specify, simulate, and

synthesize such processors. However, the optimization of

the ASIP-architecture trade-offs is generally left to human

designers. Only a few approaches have been presented to

automate the design space exploration. They all assume that

an existing architecture is used as a starting point of the

exploration. After selecting this starting point, two strategies

are generally considered, growing [4]–[9], i.e. extending the

initial architecture until no further performance is gained,

or shrinking [4]–[7], [10], [11], i.e. removing the (almost)

unused components from the architecture until performance

is lost. Both approaches show substantial area, energy, and

temporal performance improvements over the starting-point

designs. Both shrinking and growing can be time-consuming

processes, depending on the method used to evaluate the

different architectural solutions. Selection of good estimation

and search strategies is therefore important for reducing the

required design-time, without compromising the result quality.
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This paper focusses on very long instruction word (VLIW)

processor architectures. In VLIW architectures (c.f. figure 1)

instruction level parallelism is provided by explicitly encoding

the parallel execution of operations executed in different issue-

slots in the processor instruction word. The number of issue

slots in a processor, also known as the issue width, largely

determines the available processor parallelism. Providing too

much parallelism will result in an architecture with too many

(often unused) resources and a very large, and thus costly,

program memory. Providing too less parallelism will result in

an architecture which will not be able to meet the performance

requirements of the target application. Therefore, to create an

efficient solution, the processor parallelism should match the

parallelism exposed by the application.
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Fig. 1. The VLIW processor template

Through analysis of different kinds of hand crafted designs

utilizing the target VLIW technology [12]–[15], we found that

the total processor area is distributed on average as follows:

30–40% of the area is occupied by the VLIW data-path, 25%

by program memory, 25% by data memories, and 10–20%

by the register files. Moreover, the data memory and register

file sizes (35–45%) are largely determined by the application

mapping, while the program memory size (25%) is largely

determined by the VLIW issue-width, and specifically the

number of operations that can be executed in parallel by the

VLIW processor. The data-path size is substantially influenced

by the issue-width, but also by some other design decisions

related to the instruction-set selection and custom operations.

Moreover, the issue-width influences not only the memory and

data-path sizes, but also their speed and power consumption.

This makes the correct issue-width selection a critical decision

in the VLIW ASIP design.

This paper focuses on the estimation of the minimal VLIW

issue-width that guarantees the required performance of the

target application. In the past, several methods have been pre-

sented for the issue-width estimation of a VLIW ASIP [16]–

[22]. They estimate the issue-width required for obtaining a

specific maximum latency when executing a specific part of

the application. Similarly to most of the previously proposed



methods, we also consider basic blocks, i.e. application parts

with single entry and exit points. This paper extends our

results presented in [22]. We extend the previously presented

parallelism estimation techniques by considering the control-

flow of the application and adding estimations for software
pipelined loops. Software pipelining [23]–[25] is an important

loop scheduling technique for parallel architectures. It enables

the exploitation of parallelism by scheduling operations of

different loop iterations in parallel.

When building on our previous work presented in [22], this

paper addresses two very important aspects of VLIW ASIP

design. Firstly, we investigate various methods, including a

new one, for estimating the required issue-width, without

having to completely schedule the application, and provide a

quantitative comparison of these methods. Secondly, we assess

the advantage of the newly proposed method over the existing

ones when considering the ASIP development environment as

a black-box. The previously proposed methods of growing and

shrinking can require many runs of a time-consuming schedul-

ing and/or synthesis processes. Scheduler runs are especially

costly in our design framework, because we can only use the

compiler of our ASIP development environment as a black-

box. Compilation of a relatively small target application for a

given processor configuration and simulation of the resulting

application mapping can already take 1–2 minutes. This makes

the optimization time strongly dependent on the selection of an

appropriate issue-width optimization strategy and its starting-

point. This paper compares several existing, as well as, newly

proposed strategies for finding the required issue-width. In

particular, we investigate the required number of scheduler

runs for each of the strategies.

The paper is organized as follows. Section II briefly intro-

duces the existing methods for VLIW issue-width estimation

and discusses the related research. Section III provides more

detail on the considered parallelism estimation methods and

presents their quantitative comparison. Section IV presents

different optimization strategies to find the required issue-

width. Section V introduces and compares our two methods

for parallelism estimation when software pipelining is used.

Section VI concludes the paper.

II. ISSUE-WIDTH ESTIMATION

Traditionally, the issue-width decision for a VLIW processor

has been based on an analysis of the available instruction-

level parallelism in the target application. Previous research

[16]–[18], [26] mostly focused on estimating the average
parallelism that can be obtained for a specific application on

an unconstrained platform, only considering the true depen-
dencies imposed by the target application. Wall [17] being a

notable exception, focussed on the upper-bound of parallelism

over traces of a complete application. More recently, Cabezas

and Stanley-Marbell [20] published a method for estimating

the distribution of parallelism across a program’s execution.

They showed that, in some cases, over 80% of the program’s

execution stream has a parallelism that is an order of mag-

nitude smaller than the mean value. Our goal is to provide

the required real-time performance. It is therefore important

that enough parallelism is provided for the high-performance

parts of the application, even when these parts constitute only

a small portion of the application. In order to better quantify

the high variation in application parallelism Theobald et. al
[19] defined their smoothability metric. This metric provides

a score in the range of 0–100%. A program which exhibits

short bursts of high parallelism separated by long sequential

sections will get a low score, while a program that has a more

evenly distributed parallelism will obtain a higher score.

While both the parallelism distribution and the smootha-

bility metric do provide insight in the parallelism variability

of a whole program, they only provide a lower-bound on the

parallelism required for obtaining a specific performance. Our

method attempts to estimate the exact parallelism required for

obtaining a specific performance for a given program part with

real-time constraints. The estimated required parallelism can

be directly translated into an issue-width requirement for a

VLIW ASIP, or can be explored as part of a high-level de-

sign space exploration, such as the data-memory organization

exploration.

In this paper, we will compare several methods to estimate

instruction-level parallelism based on their suitability for issue-

width estimation and their computational complexity. The

following methods are considered:

1) Average parallelism (AP) [16]–[18], [21], [22], [26],

estimated by dividing the number of operations in the

program (part) by the expected latency of the program

(part).

2) Force based parallelism (FBP) a contribution of this

paper introduced in section III-A2.

3) Maximum parallelism (MP) [20]–[22], estimated by

finding the maximal number of operations which can

be scheduled in parallel.

4) Required parallelism (RP) [17], [21], [22], estimating

the minimal upper-bound on the parallelism as required

for scheduling of an application part within a given

latency bound.

We also consider the effect of software pipelining [23]–[25],

a commonly used technique for increasing the throughput of a

loop based code, and present two methods for estimating the

parallelism of software pipelined loops.

In order to ensure the practical relevance of our solutions

and provide more control on the issue-width estimation by the

end-user, we have added the option of explicitly constraining

some specific types of hardware resources in the optimization.

Common uses of this option are constraining the number of

ports of the data memories and/or constraining the number

of instances of specific (costly) resources (e.g. a maximum

number of dividers).

III. PARALLELISM ESTIMATION OF STRAIGHT-LINE CODE

This section introduces three different methods for a rapid

application parallelism estimation, including our novel force

based parallelism estimation, and presents the results of our

experimental research performed with these methods.



A. Methods

1) Average parallelism: Perhaps the most commonly used

measure to estimate the parallelism of an application is the

average parallelism. It is estimated by dividing the number of

operations by the required latency, and provides a lower bound

on the required issue-width.

ΦAP =
|V |
λ

2) Force based parallelism: Another estimate of the re-

quired issue-width can be obtained using a concept found in

Force Directed Scheduling [27] in a novel way.

During force directed scheduling, the values in the dis-
tribution graph are computed from ASAP-ALAP schedule

intervals as the sum of the probabilities of all operations

which may be executed for each given cycle. An example is

shown in figure 2. Both operations v1 and v3 can be scheduled

at 3 different moments, as shown by their ASAP-ALAP

schedule interval in figure 2b. Their scheduling probability

is therefore 1/3 for each cycle. The distribution graph of the

DFG example is shown in figure 2c. For cycle 1, for example,

the summed probability was computed by adding p(v1) = 1/3
and p(v2) = 1 which results in a bar height of 11/3.
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Fig. 2. Example DFG (a) with ASAP-ALAP schedule intervals (b), and
the corresponding distribution graph used in estimating the force based
parallelism (c).

Force Directed Scheduling selects the next operation to be

scheduled based on a force calculated from this distribution

graph. However, we observe that the distribution graph itself is

a good predictor for the required parallelism of an application

part. We therefore define the force based parallelism estimate

as the maximum value of the summed probabilities in the

distribution graph. For example, from figure 2c one will find

the value of 12/3, which could lead to the conclusion that a

parallelism of 2 is an appropriate solution. Estimating the force

based parallelism for the 8 point IDCT algorithm results in a

value of 7.85, closely corresponding to the required parallelism

of 8.

It should be noted that the force based parallelism does

not provide an upper nor lower bound on the parallelism,

but a value close to the actually required value. Figure 2

shows an under-estimation while figure 3 shows a graph that

results in an over-estimation. In this example, the operation

vx can be scheduled in parallel to operations v1 and v2. This

results in a FBP of 2.5 whereas the required parallelism for

this graph is only 2. More extreme cases, resulting in larger

overestimations, can be constructed in a similar fashion.
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Fig. 3. An example DFG resulting in an over-estimation of the required
parallelism by the FBP method.

3) Maximum parallelism: The maximum parallelism [21],

[22] can be estimated in a way that is similar to the estimation

of the force based parallelism. The only difference is that

all nodes are counted with the same weight and that the

length of the schedule interval is not taken into account as

shown in figure 4. Estimating the maximum parallelism for the

example DFG shown in figure 2 results in a parallelism of 3,

a parallelism which cannot be obtained in any valid schedule

of the DFG, but which, when provided, does guarantee the

required latency.
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Fig. 4. Potential parallelism graph used in estimating the maximum
parallelism for the example DFG given in figure 2a.

Much care should be taken though when estimating the

maximum parallelism under resource constraints, as the min-

imal schedule latency may increase due to the added con-

straints.

B. Experimental results

All three presented methods and the reference method for

VLIW issue-width estimation have been implemented using

the intermediate representation (IR) of the LLVM compiler

framework [28], and used to compare their respective quality

in the approximation of the required issue-width. The exper-

imental results have been analyzed using the R environment

for statistical computing [29].

The experiments reported in this paper have been performed

on a set of 3667 basic blocks taken from an MPEG4-SP

encoder application. This application contains a representative

set of basic blocks showing different kinds of processing. Each

of these basic blocks was taken as a separate experiment

and the parallelism was estimated for it’s ASAP schedule.

Almost all these basic blocks fall within the range of 1–150

operations but there are several larger blocks with sizes up

to 1279 operations (e.g. fdct). In the experiments, all three

parallelism estimation methods have been applied to each of

the basic blocks, with and without adding a constraint on the

number of parallel memory accesses. The memory constraint

was selected as a common example of an explicit resource

constraint. Any other resource constraints (e.g. constraining

costly function units) can be added in a similar fashion.

The experiments have been grouped as unconstrained and

constrained cases, referring respectively to the experiments



without and those with the added resource constraint. Figure 5

shows a box-plot of the results obtained from our experiments

normalized to the required parallelism (RP) of each basic block

found through an exhaustive search.
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Fig. 5. The deviation of various parallelism estimation methods from the
required parallelism. Normalized to the required parallelism.

From the experimental results shown in figure 5 we con-

clude, as expected, that the AP provides a lower-bound on

the VLIW issue-width required for executing the application,

while the MP provides an upper-bound. The AP underesti-

mates the RP, on average by 7% independent of the presence

of extra resource constraints. However, this under-estimation

of issue-width can be up to a factor of 8.9x as shown

in our experiments. The MP provides an overestimation of

up to two orders of magnitude and, on average, 31% for

the unconstrained and 72% for the constrained experiments.

The FBP delivers the most accurate estimation, on average

resulting in a 3% overestimation for the unconstrained and

a 6% overestimation for the constrained experiments. The

worst-case result for FBP is an underestimation of the required

parallelism by 5.2x.

C. Conclusion on parallelism estimation

From our experiments, it follows that the average paral-

lelism measure usually provides a quite accurate view of the

issue-width requirement of an application. However, in the

worst case, it underestimated the required issue-width by a

factor of 8.9x.

We also conclude that, the maximum parallelism provides

an upper bound with a large error margin. We therefore

consider the maximum parallelism to be less useful for a direct

issue-width estimation. However, as it will be shown in the

next section, the maximum parallelism can be used to create an

improved search strategy for finding the required parallelism.

Finally, we have shown that the force-based parallelism esti-

mation is more precise than the average parallelism estimation

and has a much smaller worst-case deviation. Our force-based

parallelism measure should therefore be the preferred method

for making initial estimates of the required parallelism.

IV. VLIW ISSUE-WIDTH OPTIMIZATION

The required issue-width can be computed both using a

growing or shrinking strategy, where growing is the most com-

mon [4], [7]–[9] strategy for exploring parallelism. However,

applying a linear search for finding the optimal issue-width

that guarantees a given latency may not be the best choice

since this requires ΦRP iterations of the scheduling algorithm,

with ΦRP equal to the required parallelism.

Another possibility, when an upper-bound to the parallelism

is known, for example through estimating the maximum

parallelism, is to perform a binary search, which requires a

number of scheduler iterations logarithmic to the size of the

considered parallelism range.

Both the previous work (e.g. [17]) and our initial experi-

ments have shown that the required issue-width ΦRP usually

has a relatively small value in comparison to the maximum

parallelism ΦMP , often even smaller than log ΦMP . For

example (cf. figure 6), a naive growing technique would find

the ΦRP in 8 scheduling steps in this case. A binary search

strategy starting on the range 1–ΦMP would also require 8

scheduling steps. Starting the growing technique at the average

parallelism ΦAP improves the performance of the growing

strategy by reducing the number of the required scheduling

steps to 4. Similarly, changing the range partitioning within

the binary search algorithm can help in improving the aver-

age performance of the binary search strategy. For example,

dividing the solution range into the lower-third and upper-two-

thirds partitions results in 5 scheduling steps. Furthermore, it

is also possible to select the first pivot independent of the

division strategy of the remaining ranges. Using the force-

based parallelism ΦFBP as first pivot, and to continue from

there with a balanced binary search, results in 4 scheduling

steps. Finding the best starting-point and search strategy are

therefore critical to an optimal performance of the required

parallelism estimation method.

A. Possible search strategies

As stated above, two main search strategies are possible,

linear search and binary search. Several starting points are

possible for both of them. This section will further explain

the different possibilities for both strategies.

1) Linear search: Both growing and shrinking strategies

can be combined with linear search depending on the selected

starting point. The simplest approach is to start at a parallelism

of 1 and increase the parallelism until a satisfactory latency is

obtained.

A faster way to obtain a single design point satisfying the

latency requirements is to start from an estimated parallelism

value which is closer to the final result. Both the average paral-

lelism and the force based parallelism are good candidates for

this. However, both ΦAP and ΦFBP are fractional numbers,

which makes the selection of the rounding strategy important.

Since the average parallelism provides a lower-bound, it can

be rounded up to the next integer value. However, deciding

upon the rounding for the force based parallelism estimation

is not so straightforward as it can either over- or under-estimate

the required parallelism. We therefore provide the results for
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Fig. 6. Latency versus parallelism plot for an 8-point IDCT function with average parallelism (ΦAP ), required parallelism for its ASAP latency (ΦRP ),
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separate experiments using either the rounded up (ceil ΦFBP )

or the rounded down (floor ΦFBP ) values as starting points.

A downside of starting at ΦFBP is that, if the initial estimate

provides us with a satisfying result, it is required to verify that

this is the optimal result, which requires an extra run of the

scheduler with a parallelism of one less. This extra scheduler

run can be avoided if ΦAP and ΦFBP are equal, because this

implicitly verifies optimality by proving that ΦFBP is in fact

the minimal value in such cases.

2) Binary search: This method requires a starting range and

a rule for selecting the pivot. Only one reasonable starting

range is available from our parallelism estimation methods

which can provide both upper- and lower-bounds for the

required parallelism. However, the balance of the search and

selection of an initial pivot are critical to the performance

of the binary search, as shown in the example accompanying

figure 6. Both the balance of the search and the selection of

the initial pivot have therefore been explored in our exper-

iments. The first set of experiments with the binary search

strategy varies the search balance, through a parameter α
of the algorithm. The second set of experiments with the

binary search strategy used ΦFBP as the initial pivot and was

performed for the same values of α. Algorithm 1 shows how

such an unbalanced binary search can be implemented using

a balancing parameter α, while using ΦFBP as the first pivot.

Algorithm 1 Computing required parallelism using an unbalanced
binary search where the balance is controlled by parameter α

Require: Basic block BB and latency bound λ̄
Ensure: Calculate the issue-width Φ of BB such that the scheduled

latency λ is the greatest integer inferior to λ̄
1: Φmax ← ΦMP

2: Φmin ← ΦAP

3: Φpivot ← floor (ΦFBP )
4: while Φmax > Φmin do
5: λ← Schedule (BB,Φpivot)
6: if λ > λ̄ then
7: Φmin ← Φpivot + 1
8: else
9: Φmax ← Φpivot

10: end if
11: Φpivot ← Φmin + �(Φmax − Φmin)/α�
12: end while
13: return ΦRP ← Φmin

B. Experimental results

For this set of our experiments we used the same frame-

work and benchmark set as were used for the comparison

experiments presented in the previous section. We have again

grouped the experiments as unconstrained and constrained
cases, referring respectively to the experiments without and

those with the added resource constraint. This time we focused

on the number of scheduler runs required for finding the

required parallelism for obtaining an ASAP schedule. We did

not count the extra scheduler run required for determining the

ASAP latency of the blocks. The results of our experiments are

presented in table I. The results of the binary search strategy

with ΦFBP as the initial pivot are only shown for an α of 2

as variations in α had negligible influence on the number of

scheduler runs.

TABLE I
TOTAL NUMBER OF SCHEDULER ITERATIONS DURING RP SEARCH OVER

ALL 3667 BLOCKS OF AN MPEG4-SP ENCODER FOR BOTH LINEAR AND

BINARY SEARCH STRATEGY

method start α unconstrained constrained

linear 1 8523 6797
AP 4705 4457

ceil(FBP) 7787 7671
floor(FBP) 7238 7091

binary search AP–MP 2 6134 6463
5 5560 5690
10 5521 5565
25 5510 5513

binary search AP–FBP–MP 2 4149 4198

It should be noted that the quality of our results is strongly

dependent on the quality of the internal scheduler. Our im-

plementation uses a list scheduler but other schedulers can be

used as long as they provide a deterministic result. From the

many available list-scheduler heuristics [30], we selected the

dependency height as the main criterion and we prioritize load-

operations in order to increase the scheduler’s freedom for

scheduling shorter sequences. We found that using this com-

bination of instruction selection criteria we can obtain a high

quality result1 without increasing the computational complex-

ity. Observe that it is possible to achieve even higher quality

results when using more effective scheduling algorithms, but

at the cost of their higher computational complexity. Our RP

1On average within 3% of the actual required parallelism as computed using
an optimal scheduler based on constraint programming [31]



method only requires that the scheduler is deterministic, but

is otherwise independent of the specific scheduling algorithm

used. This means that using a more effective (but slower)

scheduling algorithm we will be able to achieve an even higher

result quality.

C. Conclusion on the issue-width optimization

Usage of a binary search strategy with the FBP estimate as

the initial search point to find a single design point for the

parallelism-latency trade-off optimization results in the fewest

required search steps. In our experiments this resulted in a 11%

reduction from the currently used method of linear search from

the average parallelism for the unconstrained experiments,

and in a 6% reduction for the constrained experiments. We

therefore recommend to use a combination of our FBP metric

with binary search when looking for a single design point.

However, we recognize that the full Pareto-front of solutions

can be more interesting in many cases. Computing the Pareto-

front requires the exhaustive linear search.

V. PARALLELISM ESTIMATION OF PIPELINED LOOPS

Software pipelining [23] is an important throughput en-

hancement technique used when scheduling the application

code for execution on parallel architectures. Increased uti-

lization of parallel resources is achieved by overlapping the

execution of multiple iterations of a loop core. Figure 7 for

example, shows how the overlapping of multiple iterations

of a loop kernel (distinguished by their different background

color and texture) increases the parallelism exposed by a loop,

and, in consequence, the parallelism exploitation. Section V-A

provides a more in-depth explanation of this example.

Two main techniques are used for creating software

pipelined schedules: modulo scheduling [23], [24], and unroll-
and-jam [25]. Both techniques aim at creating a software

pipelined schedule, but use different approaches. Our esti-

mation methods build upon their common concepts and are

independent of the used software pipelining method.

A. Determining the minimum initiation interval

The initiation interval (II) of a software pipelined loop is the

distance, in cycles, between the start of two consecutive loop

iterations. The initiation interval can be constrained by two

factors: 1) the available resources, and 2) the inter-iteration

dependencies of the loop core.

1) Resource constraints: In our case resources are usually

unconstrained, because we are constructing new architectures.

We may however impose constraints on some especially costly

resources. Only the resources which have explicit constraints

assigned are therefore taken into account when estimating

the minimal initiation-interval. In our architectures, the main

resource constraint influencing the minimal initiation interval

is the number of single-ported memories used. Only a single

load/store operation can be performed per cycle and per

memory. As we do allow the existence of multiple memories in

our processor, multiple arrays (or data sets) can be accessed in

parallel, as long as they are mapped onto different memories.

To illustrate this we refer to the down-sampling example

shown in listing 1. Figure 7a shows a compact representa-

tion of the schedule of the loop operations without software

pipelining, horizontal black lines are used to show the repeated

part of the loop core. In the loop shown in listing 1, two

elements are read from array A and one element is written to

array B. Considering the resource constraint of the load/store

unit(s) in the architecture, we find two possible solutions for

the minimal initiation interval of this loop.

1) When both arrays are mapped onto the same memory

the minimal II is 3 (cf. figure 7b)

2) When both arrays are mapped onto different memories

the minimal II is 2 (cf. figure 7c)

f o r ( i n t i = 0 ; i < N; i ++) {
B[ i ] = (A[2* i ] + A[2* i + 1 ] ) / 2 ;

}
Listing 1. Example loop nest showing an initiation interval constrained by
the number of available load/store unit(s).

ld

ld

+

/

st

(a) Original

ld

ld

ld

ld

st

+

/

+

/

st

II=3

(b) Single memory

ld

ld

ld
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+

/
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+

/

st

+

/

st

st

II=2

(c) Two memories

Fig. 7. Simplified schedules of the loop shown in listing 1 showing the
original sequential schedule and two software pipelined versions demonstrat-
ing the influence of different memory mappings. Operations from different
loop iterations are distinguished by their background color and texture. Only
the kernel operations are shown in these schedules, address calculation and
control-flow operations are hidden for brevity.

In our architecture, loading N data elements from a single

memory requires N cycles. For software pipelined loops, this

results in the minimal initiation interval being at least equal

to the maximum number of elements accessed in a single

memory.
2) Inter-iteration dependencies: Inter-iteration dependen-

cies appear when a loop iteration requires a result that was

produced by an earlier loop iteration. So called reduction loops
are a frequently occurring example of this kind of behaviour.

Listing 2 shows an example of such a loop where Bi contains

the sum of all elements Aj with 0 ≤ j ≤ i.

B [ 0 ] = A [ 0 ] ;
f o r ( i n t i = 1 ; i < N; i ++) {

B[ i ] = B[ i −1] + A[ i ] ;
}
Listing 2. Example loop nest showing an initiation interval constrained by
a loop caried dependency.

The problem with this kind of loop is that a new iteration

can only be started after the previous Bi has been calculated.



However, this kind of inter-iteration dependency can be broken

by introducing a local variable which values are stored in a

register. Listing 3 shows how this can be achieved for the code

shown in listing 2.

r e g i s t e r i n t r = A [ 0 ] ;
B[ 0 ] = r ;
f o r ( i n t i = 1 ; i < N; i ++) {

r = r + A[ i ] ;
B[ i ] = r ;

}
Listing 3. Restructured version of the code shown in listing 2, breaking the
loop caried dependency by storing the intermediate result into a register.

Figure 8 shows the effect of this transformation on the soft-

ware pipelined schedule. A side effect of this transformation

is that the number of memory accesses is reduced which, in

turn, leads to a decreased minimum initiation-interval.

ld

ld

+

st

st

ld

dependency

(a) Original

ld

ld

ld

ld

+

+

+

st

st

st

st

II=1

(b) Transformed

Fig. 8. Simplified schedules for the original (listing 2) and transformed
(listing 3) version of a loop showing an inter-iteration dependency. The
original schedule shows the inter-iteration dependency which constrains
software pipelining. The transformed schedule has been software pipelined
and assumes that A and B are stored in different memories.

In general, all inter-iteration dependencies can be removed

by inserting one or more temporary variables into the code.

Adding many temporary variables increases the register file

size requirements which may decrease the quality of the

resulting processor design. However, usually applications only

require a limited number of temporary variables. Furthermore,

loops requiring a very large sliding window (and therefore

many temporary variables) are usually good candidates for

vectorization, which helps to decrease the number of required

temporary variables to a better manageable number. In our

work on VLIW ASIP design, we therefore do not consider

inter-iteration dependencies as a limiting factor for the ini-

tiation interval. As a result, the minimal initiation interval

estimates proposed in this paper are solely based on the

resource constraints of the architecture, and in particular on

the memory access constraints described above.

B. Methods

In the last set of experiments, we compared two methods for

the parallelism estimation when software pipelining is applied.

Both methods compute the minimal initiation interval from the

memory access counts.

1) Utilization-based estimation: This method assumes that

the final schedule efficiently utilizes the resources available

in the processor architecture. This means that the overlapping

operations of the different loop core iterations are distributed

in such a way that the obtained initiation interval becomes

equal to the minimal initiation interval. Dividing the number

of operations in a single copy of the loop core (|V |) by the

initiation interval (II) gives a lower bound on the required

number of issue-slots, quite similar to the average parallelism

method for a straight-line code. The only way to achieve this

parallelism is when the software-pipelined schedule efficiently

utilizes the provided issue-slots.

ΦSWP1 =

⌈ |V |
II

⌉

The schedule shown in figure 8b serves to illustrate this

method. The transformed kernel has 3 operations (|V |) and its

initiation interval (II) is 1 cycle. Using the utilization-based

method, the estimated parallelism is 3, which matches with the

observed software pipelined parallelism shown in figure 8b.
2) Duplication-based estimation: Our second method com-

putes the number of parallel copies of the loop core in the

software pipelined schedule. We compute this number by

dividing the latency of a single execution of the loop core

(λ) by the minimal initiation interval (II).

Ncopies =

⌈
λ

II

⌉

The software pipelined parallelism can then be estimated by

multiplying the parallelism of the original loop core with the

number of parallel copies.

ΦSWP2
= ΦorigNcopies

Re-using the schedule shown in figure 8b, we see that a

single execution of the transformed loop core has a latency (λ)

of 3 cycles, an initiation interval (II) of 1 cycle, and a non-

pipelined parallelism (Φorig) of 1. Using the duplication-based

method, we find that 3 copies of the loop will run in parallel,

resulting in the total parallelism of the software pipelined loop

being 3.

In our experiments we have used the required parallelism

ΦRP , obtained from algorithm 1. Other parallelism estimates,

such as found using the AP or FBP methods, are also usable.

However, using the parallelism estimates obtained with the

AP method will produce a result that is very similar to the

results provided by the utilization-based parallelism estimation

ΦSWP1
. Using parallelism estimates obtained with the FBP

method will produce very similar results compared to our

choice of using the estimates from the RP method.

C. Experimental results

We mapped several kernels (partially) from the Polybench

benchmark [32] onto different customized instances of our

target VLIW ASIP architecture. This resulted in a total of 14

different software pipelined loops for which we could compare

the estimated software pipelined parallelism with the actually

obtained parallelism. In this section, we compare the results of

our parallelism estimation methods with the actually obtained

parallelism to quantify the respective quality of our estimation

methods.
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Fig. 9. Comparison of estimated parallelism versus observed parallelism after software pipelining in custom built architectures.

Figure 9 shows the estimated parallelism using our two

methods together with the actually obtained parallelism when

running the loop code on an architecture which was manually

customized for that particular loop. We can see that the

utilization-based estimation method performs the best. Its aver-

age error is less than 1% in our experiments. Our duplication-

based estimation method performs worse, it provides a, quite

large, over-estimation (54% on average).

Further investigation into the estimation errors of our

utilization-based method shows us that their source is outside

of our method, but in the abstraction of LLVM’s IR over the

actual instruction-set of our target architecture. The effect of

these estimation errors is especially visible for loops with a

very small II such as L7 and L10 (which both have an II of 1).

Implementing this estimation at a lower, more accurate, level

of the compiler will therefore result in even better estimations.

Investigating the estimation errors of the duplication-based

method shows a more fundamental problem. The duplication-

based method estimates the number of copies of the loop core

executed in parallel. However, the operations of a loop core are

usually not uniformly distributed in time and the resulting non-

pipelined schedule will only utilize the required parallelism

for a small portion of the time. The over-estimation of the

software pipelined parallelism is a direct effect of the limited

utilization within the original schedule. One of the key benefits

of software pipelining is that it enables the scheduler to fill the

gaps in the schedule of one loop iteration by executing opera-

tions of another iteration, resulting this way in a much better

overall utilization. A variation of the duplication-based method

is possible by actually unrolling the input code Ncopies times

and directly estimating the parallelism of the unrolled loop.

However, our experiments show that this gives results which

are equivalent to the results obtained using the utilization-

based method, which is much simpler to apply.

In this section, we have shown how a simple utilization-

based method can be used to efficiently obtain very good

estimates for the parallelism of software pipelined loops. The

average error margin of the utilization-based method was

shown to be less then 1%. Furthermore, all the observed

errors were not caused by our method, but by abstractions of

the LLVM-IR on which our analysis was performed. Imple-

menting the method in a later stage of compilation providing

less abstract information will result in even more accurate

estimations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and compared three methods

for estimating the required VLIW issue-width of an ASIP for

a given target application. We experimentally demonstrated

that our force based parallelism estimation proposed in this

paper delivers results with a 3% over-estimation on average,

substantially outperforming the commonly used average par-

allelism estimation regarding both the average and maximum

error. Moreover, our algorithms can be controlled by the

ASIP designer to account for resource constraints, such as

the maximum number of instances for a specific type of

function unit (e.g. a divider), etc. We have also presented

several different strategies for obtaining the required VLIW

issue-width for a specific latency and were able to reduce

the number of required scheduler runs by 11% on average.

We also found that the parallelism–latency trade-off is often

more important. Furthermore, we investigated two methods

of estimating the required VLIW issue-width for software

pipelined loop bodies. We found that our simple and very

efficient utilization-based method was capable of estimating

the required parallelism with less than 1% error on average.

Finally, we found that the remaining estimation errors were

only caused by the application code abstractions of the LLVM

IR on which we based our estimations.

Our future work includes two parts. Firstly, we want to

implement the estimation algorithm as a part of the optimiza-

tion heuristics when exploring the effects of loop transfor-

mations during an automatic VLIW architecture optimization.

Secondly, we want to improve the accuracy of our estimation

algorithms by implementing them at a lower level of the

compiler abstraction.
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