PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy relation-based approximation techniques in supporting medical diagnosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present an application of fuzzy approximation operators in supporting medical diagnosis. These operators are compositions of fuzzy modal operators. The underlying idea is based on the observation that approximations of fuzzy sets may be viewed as intuitionistic fuzzy sets. Reasoning scheme is determined by distances between intuitionistic fuzzy sets proposed by Szmidt and Kacprzyk.
Twórcy
  • Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] K. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol. 20, no. 1, 1986, 87–96, DOI: 10.1016/S0165-0114(86)80034-3.
  • [2] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica–Verlag, 1999, DOI: 10.1007/978-3-7908-1870-3.
  • [3] M. Baczyński and B. Jayaram, Fuzzy Implications, Studies in Fuzziness and Soft Computing, Springer-Verlag Berlin Heidelberg, 2008, DOI: 10.1007/978-3-540-69082-5.
  • [4] S. K. De, R. Biswas, and A. R. Roy, “An application of intuitionistic fuzzy sets in medical diagnosis”, Fuzzy Sets and Systems, vol. 117, 2001, 209–213, DOI: 10.1016/S0165-0114(98)00235-8.
  • [5] S. Demri and E. Orłowska, Incomplete Information: Structure, Inference, Complexity, EATCS Monographs in Theoretical Computer Science, Springer Berlin, Heidelberg, 2002, Hardcover ISBN 978-3-540-41904-4.
  • [6] I. Düntsch and G. Gediga. “Approximation Operators in Qualitative Data Analysis”. In: H. de Swart, E. Orłowska, G. Schmidt, and M. Roubens, eds., Theory and Applications of Relational Structures as Knowledge Instruments, volume 2929 of Lecture Notes in Computer Science, 214–230. Springer-Verlag Berlin Heidelberg, 2003. DOI: 10.1007/978-3-540-24615-2_10.
  • [7] E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, Springer Netherlands, 2000, DOI: 10.1007/978-94-015-9540-7.
  • [8] E. Orłowska, ed., Incomplete Information: Rough Set Analysis, volume 13 of Studies in Fuzziness and Soft Computing, Springer-Verlag, 1998, DOI: 10.1007/978-3-7908-1888-8.
  • [9] E. Orłowska, A. M. Radzikowska, and I. Rewitzky, Dualities for Structures of Applied Logics, volume 56 of Mathematical Logic and Foundations, College Publications, 2015, ISBN 978-84890-181-0.
  • [10] A. M. Radzikowska, “A Fuzzy Approach to Some Set Approximation Operations”. In: W. Duch, J. Kacprzyk, E. Oja, and S. Zadrożny, eds., Artifiicial Neural Networks: Formal Models and Their Applications ICANN 2005, vol. 3697, 2005, 673–678, DOI: 10.1007/11550907_107.
  • [11] A. M. Radzikowska. “Fuzzy Modal-like Approximation Operations Based on Residuated Lattices”. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU, July 2-7, 2006, Paris, France, 444–451.EDK - Editions Médicales et Scientifiiques, 2006.
  • [12] A. M. Radzikowska, “Fuzzy Modal-like Approximation Operators Dased on Double Residuated Lattices”, Journal of Applied Non-Classical Logics, vol. 16, no. 3-4, 2006, 485–506, DOI: 10.3166/jancl.16.485-506.
  • [13] A. M. Radzikowska. “On Lattice-Based Fuzzy Rough Sets”. In: C. Cornelis, G. Deschrijver, M. Nachtegael, S. Schockaert, and Y. Shi, eds., 35 Years of Fuzzy Set Theory. Celebratory Volume Dedicated to Retirement of Etienne E. Kerre, volume 261 of Studies in Fuzziness and Soft Computing, 107–126. Springer-Verlag, Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-16629-7_6.
  • [14] A. M. Radzikowska, “Duality via Truth for Information Algebras Based on De Morgan lattices”, Fundamenta Informaticae, vol. 144, no. 1, 2016, 45–72, DOI: 10.3233/FI-2016-1323.
  • [15] A. M. Radzikowska, “Fuzzy Modal Operators and Their Applications”, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 11, no. 1, 2017, 10–19, DOI: 10.14313/JAMRIS_1-2017/2.
  • [16] A. M. Radzikowska and E. E. Kerre. “On Some Classes of Fuzzy Information Relations”. In: Proceedings of the 31th International Symposium on Multiple-Valued Logics ISMVL, May 22-24, 2001, Warsaw, Poland, 75–80. IEEE Computer Society, 2001. ISBN 0-7695-1083-3.
  • [17] A. M. Radzikowska and E. E. Kerre. “Towards Studying of Fuzzy Information Relations”. In: J. M. Garibaldi and R. I. John, eds., Proceedings of the 2nd International Conference in Fuzzy Logics and Technology EUSFLAT, Leicester, United Kingdom, September 5-7, 2001, 365–369. De Montfort University, Leicester, UK, 2001. http://dblp.unitrier. de/rec/bib/conf/eus􀏐lat/RadzikowskaK01.
  • [18] A. M. Radzikowska and E. E. Kerre, “A comparative study of fuzzy rough sets”, Fuzzy Sets and Systems, vol. 126, 2002, 137–155, DOI: 10.1016/S0165-0114(01)00032-X.
  • [19] A. M. Radzikowska and E. E. Kerre. “A Fuzzy Generalization of Information Relations”. In: E. Orłowska and M. Fitting, eds., Beyond Two: Theory and Applications of Multiple-Valued Logics, volume 114 of Studies in Fuzziness and Soft Computing, 287–312. Physica-Verlag Heidelberg, 2002. DOI: 10.1007/978-3-7908-1769-0.
  • [20] A. M. Radzikowska and E. E. Kerre, “Algebraic Characterizations of Some Fuzzy Information Relations”. In: Proceedings of the 13rd IEEE International Conference on Fuzzy Systems FUZZ–IEEE, July 25-29, 2004, Budapest, Hungary, vol. 1, 2004, 115–120, ISBN 0-7803-8353-2.
  • [21] A. M. Radzikowska and E. E. Kerre. “Fuzzy Rough Sets based on Residuated Lattices”. In: J. F. Peters, A. Skowron, D. Dubois, J. W. Grzymała-Busse, M. Inuiguchi, and L. Polkowski, eds., Transactions on Rough Sets II: Rough Sets and Fuzzy Sets, volume 3135 of Lecture Notes in Computer Science, 278–296. Springer-Verlag Berlin Heidelberg, 2004. DOI: 10.1007/978-3-540-27778-1_14.
  • [22] A. M. Radzikowska and E. E. Kerre. “Lattice-Based Fuzzy Information Relations and Operators”. In: B. De Baets, R. De Caluve, J. Kacprzyk, G. De Tré, and S. Zadrożny, eds., Proceedings of Workshop on Data and Knowledge EngineeringEUROFUSE, September 22-25, 2004, Warsaw, Poland,433–443. Akademicka O􀏐icyna Wydawnicza EXIT, 2004. ISBN 83-87674-71-0.
  • [23] A. M. Radzikowska and E. E. Kerre. “On L-Fuzzy Rough Sets”. In: L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, and L. A. Zadeh, eds., ArtifiicialIntelligence and Soft Computing - ICAISC 2004. Proceedings of the 7th International Conference, Zakopane, Poland, June 7-11, 2004, volume 3070 of Lecture Notes in Arti􀏔icial Intelligence, 526–531. Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-540-24844-6_78.
  • [24] A. M. Radzikowska and E. E. Kerre. “An Algebraic Approach to Fuzzy Modalities”. In: O. Hryniewicz, J. Kacprzyk, and D. Kuchta, eds., Issues in Soft Computing - Decisions and Operation Research, 71–86. Akademicka O􀏐icyna Wydawnicza EXIT, Warsaw, Poland, 2005. ISBN: 83-87674-98-2.
  • [25] A. M. Radzikowska and E. E. Kerre. “Algebraic Characterisations of Some Fuzzy Information Relations”. In: O. Hryniewicz, J. Kacprzyk, and D. Kuchta, eds., Soft Computing: Foundations and Theoretical Aspects, 71–86. Akademicka Oficyna Wydawnicza EXIT, Warsaw, 2005. ISBN: 83-87674-97-4.
  • [26] A. M. Radzikowska and E. E. Kerre, “Characterisations of main classes of fuzzy relations using fuzzy modal operators”, Fuzzy Sets and Systems, vol. 152, no. 2, 2005, 223–247, DOI: 10.1016/j.fss.2004.09.005.
  • [27] A. M. Radzikowska and E. E. Kerre. “Fuzzy Information Relations and Operators: An Algebraic Approach Based on Residuated Lattices”. In: H. de Swart, E. Orłowska, G. Schmidt, and M. Roubens, eds., Theory and Applications of Relational Structures as Knowledge Instruments II, number 4342 in Lecture Notes in Arti􀏐icial Intelligence, 162–184. Springer-Verlag, 2006. DOI: 10.1007/11964810_8.
  • [28] E. Sanchez. “Solutions in composite fuzzy relation equation. application to medical diagnosis in Brouwerian Logic”. In: M. M. Gupta, G. N. Saridis, and B. R. Gaines, eds., Fuzzy Automata and Decision Process, 221–234. Elsevier, North Holland, 1977.
  • [29] E. Szmidt and J. Kacprzyk, “Distances between intuitionistic fuzzy sets”, Fuzzy Sets and Systems, vol. 114, no. 3, 2000, 505–518, DOI: 10.1016/S0165-0114(98)00244-9.
  • [30] E. Szmidt and J. Kacprzyk. “Intuitionistic Fuzzy Sets in Some Medical Applications”. In: B. Reusch, ed., Computational Intelligence. Theory and Applications, volume 2206 of Lecture Notes in Computer Science, 148–151. Springer Berlin Heidelberg, 2001. DOI: 10.1007/3-540-45493-4_19.
  • [31] E. Szmidt and J. Kacprzyk. “A Similarity Measure for Intuitionistic Fuzzy Sets and Its Application in Supporting Medical Diagnostic Reasoning”. In: L. Rutkowska, J. Siekmann, R. Tadeusiewicz, and L. A. Zadeh, eds., Artificial Intelligence and Soft Computing - ICAISC 2004, volume 3070 of Lecture Notes in artificial Intelligence, 388–393. Springer-Verlag Berlin Heidelberg, 2004. DOI: 10.1007/978-3-540-24844-6_56.
  • [32] E. Szmidt and J. Kacprzyk. “Distances Between Intuitionistic Fuzzy Sets and their Applications in Reasoning”. In: S. K. Halgamuge and L. Wang, eds., Computational Intelligence forModelling and Prediction, volume 2 of Studies in Computational Intelligence, 101–116. Springer Berlin Heidelberg New York, 2005. DOI:10.1007/10966518_8.
  • [33] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, 1965, 338–353, DOI: 10.1016/S0019-9958(65)90241-X.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76a5e3ec-ce4e-48bc-8965-9725349601f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.