PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical responses of igneous rocks to microwave irradiation: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to explore the mechanism of microwave radiation damage to rocks and improve the efficiency of underground rock fragmentation, statistics have been conducted for nearly 40 years, and the heating effects of four types of igneous rocks (granite, basalt, syenite, and gabbro) after microwave irradiation have been analyzed. The attenuation of tensile and compressive strength, and the microwave response mechanism of igneous rocks are studied. The results show that under microwave energy of 0–50 kJ, the tensile and compressive strengths of rock do not change significantly; however, above 50 kJ, they decrease rapidly. With increasing contents of Fe-rich minerals in rock, such as pyroxene, microwaves have a greater fracturing effect, which is manifested as rapid attenuations in tensile and compressive strength. The wave velocity damage factor and tensile strength damage factor of igneous rocks increase with the increase of microwave energy.
Czasopismo
Rocznik
Strony
1183--1192
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
autor
  • College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
autor
  • College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
Bibliografia
  • 1. Ali AY, Bradshaw SM (2010) Bonded-particle modelling of microwave-induced damage in ore particles. Miner Eng 23:780–790. https://doi.org/10.1016/j.mineng.2010.05.019
  • 2. Ali AY, Bradshaw SM (2011) Confined particle bed breakage of microwave treated and untreated ores. Miner Eng 24:1625–1630. https://doi.org/10.1016/j.mineng.2011.08.020
  • 3. Bai GG, Sun Q, Jia HL, Ge ZL, Li PF (2021) Variations in fracture toughness of SCB granite influenced by microwave heating. Eng Fract Mech 258:108048. https://doi.org/10.1016/j.engfracmech.2021.108048
  • 4. Bykov YV, Rybakov KI, Semenov VE (2001) High-temperature microwave processing of materials. J Phys D Appl Phys 34(13):R55. https://doi.org/10.1088/0022-3727/34/13/201
  • 5. Dai J, Xu SL, Song SD (2019) Experimental study on strength deterioration of basalt caused by microwave irradiation. Coal Technol 38(01):29–32. https://doi.org/10.13301/j.cnki.ct.2019.01.008 (in chinese)
  • 6. Ge Z, Sun Q, Xue L, Yang T (2021) The influence of microwave treatment on the mode I fracture toughness of granite. Eng Fract Mech 249:107768. https://doi.org/10.1016/j.engfracmech.2021.107768
  • 7. Ge ZL, Sun Q (2021) Acoustic emission characteristics of gabbro after microwave heating. Int J Rock Mech Min Sci 138:104616. https://doi.org/10.1016/j.ijrmms.2021.104616
  • 8. Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min Sci 100:138–150. https://doi.org/10.1016/j.ijrmms.2017.10.013
  • 9. Griffiths L, Lengliné O, Heap MJ, Baud P, Schmittbuhl J (2018) Thermal cracking in westerly granite monitored using direct wave velocity, coda wave interferometry, and acoustic emissions. J Geophys Res: Solid Earth 123(3):2246–2261. https://doi.org/10.1002/2017JB015191
  • 10. Gururaj P, Umesh P, Shetty A (2021) Assessment of surface soil moisture from ALOS PALSAR-2 in small-scale maize fields using polarimetric decomposition technique. Acta Geophys 69(2):579–588. https://doi.org/10.1007/s11600-021-00557-x
  • 11. Hartlieb P, Grafe B (2017) Experimental study on microwave assisted hard rock cutting of granite. BHM Berg- und Huettenmaenn Monatsh 162(2):1–5. https://doi.org/10.1007/s00501-016-0569-0
  • 12. Hartlieb P, Kuchar F, Moser P, Kargl H, Restner U (2018) Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity. Miner Eng 118:37–51. https://doi.org/10.1016/j.mineng.2018.01.003
  • 13. Hassani F, Nekoovaght P, Charib N (2016) The influence of microwave irradiation on rocks for microwave-assisted underground excavation. J Rock Mech Geotech Eng 8(1):1–15. https://doi.org/10.1016/j.jrmge.2015.10.004
  • 14. Hassani F, Shadi A, Rafezi H, Sasmito AP, Ghoreishi-Madiseh SA (2020) Energy analysis on the effectiveness of microwave-assisted fragmentation. J Miner Eng 159:106642. https://doi.org/10.1016/j.mineng.2020.106642
  • 15. Hu X, Song X, Liu Y, Cheng Z, Ji J, Shen Z (2019) Experiment investigation of granite damage under the high-temperature and high-pressure supercritical water condition. J Petrol Sci Eng 180:289–297. https://doi.org/10.1016/j.petrol.2019.05.031
  • 16. Jia HL, Wang T, Chen WH, Ding S, Luo T, Sun Q (2021) Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground. Cold Reg Sci Technol 184:103248. https://doi.org/10.1016/j.coldregions.2021.103248
  • 17. Jones DA, Kingman SW, Whittles DN, Lowndes IS (2005) Understanding microwave assisted breakage. Miner Eng 18(7):659–669
  • 18. Kahraman S, Canpolat AN, Fener M (2020) The influence of microwave treatment on the compressive and tensile strength of igneous rocks. Int J Rock Mech Min Sci 129:104303. https://doi.org/10.1016/j.ijrmms.2020.104303
  • 19. Kahraman S, Canpolat AN, Fener M, Kilic CO (2020) The assessment of the factors affecting the microwave heating of magmatic rocks. Geomech Geophys Geo-Energy Geo-Resour 6(4):1–16. https://doi.org/10.1007/s40948-020-00197-3
  • 20. Kingman SW, Corfielf GM, Rowson NA (1999) Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Magn Electr Sep 9(3):131–148. https://doi.org/10.1155/1999/57075
  • 21. Kingman SW, Jackson K, Bradshaw SM, Rowsonc NA, Greenwoodc R (2004) An investigation into the influence of microwave treatment on mineral ore comminution. Powder Technol 146(3):176–184. https://doi.org/10.1016/j.powtec.2004a.08.006
  • 22. Kingman SW, Jackson K, Cumbane A, Bradshaw SM, Rowsonc NA, Greenwood R (2004) Recent developments in microwave-assisted comminution. Int J Miner Process 74(1):71–83. https://doi.org/10.1016/j.minpro.2003.09.006
  • 23. Kingman SW (2006) Recent developments in microwave processing of minerals. Int Mater Rev 51(1):1–12. https://doi.org/10.1179/174328006X79472
  • 24. Lan WJ, Wang HX, Zhang X, Fan HB, Feng K, Liu YX, Sun BY (2020) Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock. Energy 206:118211. https://doi.org/10.1016/j.energy.2020.118211
  • 25. Li Q, Li X, Yin T (2021) Effect of microwave heating on fracture behavior of granite: an experimental investigation. Eng Fract Mech 250:107758. https://doi.org/10.1016/j.engfracmech.2021.107758
  • 26. Lu GM, Li YH, Hassani F, Zhang X (2017) The influence of microwave irradiation on thermal properties of main rock-forming minerals. Appl Therm Eng 112:1523–1532. https://doi.org/10.1016/j.applthermaleng.2016.11.015
  • 27. Lu GM, Zhou JJ, Li YH, Zhang XW, Gao WY (2020) The influence of minerals on the mechanism of microwave-induced fracturing of rocks. J Appl Geophys 180:104123. https://doi.org/10.1016/j.jappgeo.2020.104123
  • 28. Satish H, Ouellet J, Raghavan V, Radziszewski P (2006) Investigating microwave assisted rock breakage for possible space mining applications. Min Technol 115(1):34–40. https://doi.org/10.1179/174328606x101902
  • 29. Tian J, Lu GM, Feng XT, Li YH, Zhang XW (2019) Experimental study on microwave sensitivity of main rock-forming minerals. Rock Soil Mechs. https://doi.org/10.16285/j.rsm.2018.0363 (in Chinese)
  • 30. Toifl M, Hartlieb P, Meisels R, Antretter T, Kuchar F (2017) Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite. Miner Eng 103:78–92. https://doi.org/10.1016/j.mineng.2016.09.011
  • 31. Toifl M, Meisels R, Hartlieb P, Kuchar F, Antretter T (2016) 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Miner Eng 90:29–42. https://doi.org/10.1016/j.mineng.2016.01.001
  • 32. Wang G, Radziszewski P, Ouellet J (2008) Particle modeling simulation of thermal effects on ore breakage. Comput Mater Sci 43(4):892–901. https://doi.org/10.1016/j.commatsci.2008.02.005
  • 33. Wang Y, Djordjevic N (2014) Thermal stress FEM analysis of rock with microwave energy. Int J Miner Process 130:74–81. https://doi.org/10.1016/j.minpro.2014.05.012
  • 34. Xu T, He L, Zheng YL, Zou XX, Badrkhani V, Schillinger D (2021) Experimental and numerical investigations of microwave-induced damage and fracture formation in rock. J Therm Stresses 44(4):513–528. https://doi.org/10.1080/01495739.2020.1865857
  • 35. Xu T, Yuan Y, Heap MJ, Zhou GL, Perera MSA, Ranjith PG (2021) Microwave-assisted damage and fracturing of hard rocks and its implications for effective mineral resources recovery. Miner Eng 160:106663. https://doi.org/10.1016/j.mineng.2020.106663
  • 36. Yao JH, Tao M, Zhao R, Hashemi SS, Wang YQ (2021) Effect of microwave treatment on thermal properties and structural degradation of red sandstone in rock excavation. Miner Eng 162:106730. https://doi.org/10.1016/j.mineng.2020.106730
  • 37. Zhao QH, Zhao XB, Zheng YL, Li JC, He L, Liu HW, YU JW, (2020) A review of mineral heating characteristics and rock weakening effects under microwave irradiation. Geolo J China Univ 26(3):350–360. https://doi.org/10.16108/j.issn1006-7493.2019041
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-769a51ac-f671-4201-b87d-8e6e192ee7bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.