PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of monitoring vehicles used in road transports plays an important role in detecting fraud committed by drivers. Algorithm designers face a number of challenges, including large number of vehicles monitored, demands related to online calculations, and ability to easily explain fraud alarms triggered to supervisors who make final decisions about actions to be taken. In this paper, we propose rather general, lightweight stream, online heuristics. The vehicle’s position is periodically controlled by a GNSS device. The algorithm detects potential illegal activities along the route between the origin and the destination. Anomalies in the vehicle’s trajectory are detected, based on a multi-resolution analysis of the economy of routes. The economy metric is easily understood and verifiable by controllers. The solution is also capable of identifying clearly suspicious trajectories that popular geofencing approaches would overlook. The scale on which the solution may be adopted is obtained thanks to the stream – like nature of the algorithm: essentially, the resources used do not increase along with the size of the input stream (the number of GNSS frames generated for the vehicle). An experiment illustrating the algorithm’s viability is presented as well.
Rocznik
Tom
Strony
79--85
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • Advanced Information Technologies Department, National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
  • [1] S. S. Dukare, K. Rane, and D. A. Patil, „Vehicle tracking, monitoring and alerting system: a review", Int. J. of Computer Applications, vol. 119, no. 10, pp. 39-43, 2015 (DOI: 10.5120/21107-3835).
  • [2] „PUESC" [Online]. Available: http://puesc.gov.pl
  • [3] M. Saravanan, S. Aishwarya, and L. N. Aravindan, „Tracking anomalies in vehicle movements using mobile GIS", in 2013 Science and Information Conf., London, 2013, pp. 845-852 [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6661840
  • [4] A. Kuepper, U. Bareth, and B. Freese, „Geofencing and background tracking - the next features in LBSs" in 41. Jahrestagung der Gesellschaft für Informatik, INFORMATIK 2011 - Informatik schafft Communities, Berlin, Germany, October 4-7, 2011 [Online]. Available: https://www.user.tu-berlin.de/komm/CD/paper/010221.pdf
  • [5] F. Reclus and K. Drouard, „Geofencing for eet & freight management", in 2009 9th Int. Conf. on Intell. Transp. Syst. Telecommun., (ITST), 2009, pp. 353-356 (DOI: 10.1109/ITST.2009.5399328).
  • [6] P. Deshmukh, A. Bhajibhakre, S. Gambhire, A. Channe, and N. Deshpande, „Survey of geofencing algorithms", Int. J. of Comp. Science Engin. Techniques, vol. 3, no. 2, 2018 (DOI: 10.29126/2455135x/IJCSE-V3I2P1).
  • [7] R. R. Sillito and R. Fisher, „Semi-supervised learning for anomalous trajectory detection", in Proc. of the British Machine Vision Conf., 2008, pp. 103.1-103.10 (DOI: 10.5244/C.22.103).
  • [8] Y. Ge, H. Xiong, C. Liu, and Z. Zhou, „A Taxi Driving Fraud Detection System", in 11th IEEE Int. Conf. on Data Min., Vancouver, Canada, 2011, pp. 181-190 (DOI: 10.1109/ICDM.2011.18).
  • [9] J. B. Oliv, „Anomaly detection and modeling of trajectories", M.Sc. thesis, CMU-CS-12-133, School of Comput. Sc., Carnegie Mellon University, Pittsburgh, 2012 [Online]. Available: http://reportsarchive.adm.cs.cmu.edu/anon/2012/CMU-CS-12-133.pdf
  • [10] Y. Bu, L. Chen, A. W. Fu, and D. Liu. „Eficient anomaly monitoring over moving object trajectory streams", in Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discov. and Data Mining, Paris, France, 2009 (DOI: 10.1145/1557019.1557043).
  • [11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. London: MIT Press, 2001 (ISBN: 9780262032933).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76981e50-6898-42dc-a775-4d057ad73953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.