PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proposed mapping architecture between IAX and Jingle protocols

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, Multimedia Communication has improved rapidly to allow people to communicate via the Internet. However, Internet users cannot communicate with each other unless they use the same chatting applications since each chatting application uses a certain signaling protocol to make the media call. The mapping architecture is a very critical issue since it solves the communication problems between any two protocols, as well as it enables people around the world to make a voice/video call even if they use different chatting applications. Providing the interoperability between different signaling protocols and multimedia applications takes the advantages of more than one protocol. Many mapping architectures have been proposed to ease exchanging the media between at least two users without facing any difficulties such as SIP-Jingle, IAX-RSW, H.323-MGCP, etc. However, the design of any of the existing mapping architectures has some weaknesses related to larger delay, time consuming, and security matters. The only way to overcome these problems is to propose an efficient mapping architecture. This paper proposed a new mapping architecture between Inter-Asterisk eXchange Protocol and Jingle Protocol. The proposed mapping architecture consists of IAX domain (IAX client, IAX server, IAX-to-Jingle gateway), and Jingle domain (Jingle client, Jingle server, Jingle-to-IAX gateway). The tasks of the translation gateways are represented by the URI conversion, media capability exchange, translator of call setup and teardown signals, and real time media transmission.
Twórcy
  • Universiti Sains Malaysia
autor
  • Level 7 Main Office, School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Penang, Malaysia
Bibliografia
  • 1. Saravanan K. and Ramadass S. A Bi-Directional Multicast Tunneled to Support the Distributed Multimedia Conferencing Environment Architecture. In IWS (Internet Workshop on Asia Pacific Advanced Network and its Applications), IEEE, Tsukuba, Japan, 2000, 135-139.
  • 2. Haj Aliwi H.S. and Sumari P. A Comparative Study of VoIP, MCS, Instant Messaging Protocol and Multimedia Applications. (IJCNS) International Journal of Advances in Computer Networks and Its Security, 2014, 67-70.
  • 3. Ingo H. Session Initiation Protocol (SIP) and other Voice over IP (VoIP) protocols and applications. Sesca Technologies, Finland, 2011.
  • 4. Haj Aliwi H.S., Sumari P., Alomari S.A. An Efficient Interworking between Heterogeneous Networks Protocols and Multimedia Computing Applications. International Journal of Computer Science and Information Security (IJCSIS), USA, 11(5), 2013, 81-86.
  • 5. Ramadass S., Subramanian R.K., Guyennet H. and Trehel M. Using RSW Control Criteria to Create a Distributed Environment for Multimedia Conferencing. Proceedings of the Research and Development in Computer Science and its Applications, Penang, Malaysia, 1997, 27-29.
  • 6. Oishi, Takumi, Inouchi and Hidenori. Method and System for Persistent Translation between Protocols. 2007. [Online]. Visited on July 2013, Available from World Wide Web: http://www.patentstorm.us /patents/pdfs/ patent_id/ 7305480.html
  • 7. Geneiatakis D., Dagiuklas T., Kambourakis G., Lambrinoudakis C. and Gritzalis S. Survey of security vulnerabilities in session initial protocol. IEEE Communications Surveys & Tutorials, 8(3), 2006, 68-81.
  • 8. Glasmann J., Kellerer W. and Muller H. Service Architectures in H.323 and SIP: A Comparison. IEEE Communications Surveys & Tutorials, 5(2), 2003, 32-47.
  • 9. Basicevic I., Popovic M. and Kukolj D. Comparison of sip and h.323 Protocols. The Third International Conference on Digital Telecommunications ICDT ’08, Bucharest, 2008, 162–167.
  • 10. Dajiuklas T., Ioannou K. and Garmpis A. A Lightweight and Scalable VoIP platform based on MGCP/H.323 interworking and QOS management capabilities. Proceedings of the 4th WSEAS International Conference on Information Security, Communications and Computers, Tenerife, Spain, 2005, 548-553.
  • 11. Haj Aliwi H.S., Alomari S.A. and Sumari P. An Efficient Audio Translation Approach between SIP and RSW Protocols. Proceedings of 3rd World Conference on Information Technology (WCIT-2012), University of Barcelona, Barcelona, Spain, 2013, 31-37.
  • 12. Spencer M., Capouch B., Guy E., Miller F. and Shumard K. IAX: Inter-Asterisk eXchange Version 2. 2010. [Online]. Visited on June 2013, Available from World Wide Web: http://tools.ietf.org/html/rfc5456
  • 13. Spencer M. IAX. 2004. [Online]. Visited on March 2013, Available from World Wide Web: http://www.voip-info.org/wiki/view/IAX
  • 14. Reeves E. Testing Devices That Handle Inter-Asterisk eXchange, Version 2 (IAX2) Protocol. 2011. [Online]. Visited on June 2013, Available from World Wide Web: http://blogs.ixiacom.com/ixia-blog/ content-aware-testing-iax2-protocol/.
  • 15. Spencer M. and Miller F.W. IAX Protocol Description. 2004. [Online]. Visited on March 2013, Available from World Wide Web: http://www.voipinfb.hu/content/download/iax.pdf
  • 16. Dinicolo D. Transporting VoIP Traffic with UDP and RTP. 2007. [Online]. Visited on March 2013, Available from World Wide Web: http://www.2000trainers.com/voip/voip-udp-rtp-protocol/
  • 17. Forouzan B. Data Communications and Networking. 4th edition, McGrawHill, New York, USA, 2007.
  • 18. Haj Aliwi H.S. and Sumari P. Real Time Audio Translation Module between IAX and RSW. (IJCNC) International Journal of Computer Networks & Communications, 2014, 125-133.
  • 19. Kolhar M., Abu-Alhaj M., Abouabdalla O., Wan T.C. and Manasrah A. Comparative Evaluation and Analysis of IAX and RSW. International Journal of Computer Science and Information Technology (IJCSIS), USA, 6(3), 2013, 250–252.
  • 20. Haj Aliwi H.S. and Sumari P. A Comparative Study of VoIP Protocols. International Journal of Computer Science and Information Security (IJCSIS), USA, 11(4), 2013, 97-101.
  • 21. Saint-Andre P. Extensible Messaging and Presence Protocol (XMPP). RFC 3921, Instant Messaging and Presence. Internet Engineering Task Force, 2004.
  • 22. Saint-Andre P., Ibarra S. and Ivov E. Interworking between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Media Sessions. draft-ietf-stox-media-05, XMPP Standards Foundation, 2015.
  • 23. Ludwig S., Beda J., Saint-Andre P., McQueen R., Egan S. and Hildebrand J. Jingle. XSF XEP 0166, 2007. [Online]. Visited on March 2013, Available from World Wide Web: http://xmpp.org/extensions/xep-0166.html.
  • 24. Adams M. and Kwon M. Vulnerabilities of the Real-Time Transport (RTP) Protocol for Voice over IP (VoIP) Traffic. Proceedings of the 6th IEEE Conference on Consumer Communications and Networking Conference, USA, 2009, 958-962.
  • 25. Ludwig S., Saint-Andre P., Egan S., McQueen R. and Cionoiu D. Jingle RTP Sessions. XEP 0167, 2009. [Online]. Visited on March 2013, Available from World Wide Web: http://xmpp.org/extensions/xep-0167.html.
  • 26. Saint-Andre P., Meyer D., Karneges J., Lundblad M., Markmann T. and Hartke K. Jingle Socks Byte streams Transport Methods. XEP 0260, 2011. [Online]. Visited on March 2013, Available from World Wide Web: http://xmpp.org/extensions/xep-0260.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76914d18-17e0-49fc-b02a-5d4d9565fefb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.