PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state-of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wzory
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Reykjavik University, Engineering Optimization & Modeling Center, School of Science and Engineering, 101 Reykjavik, Iceland
Bibliografia
  • [1] Lu, J.H., Chang, B.S. (2017). Planar compact square-ring tag antenna with circular polarization for UHF RFID applications. IEEE Trans. Ant. Prop., 65(2), 432-441.
  • [2] Pan, T., Zhang, S., He, S. (2014). Compact RFID tag antenna with circular polarization and embedded feed network for metallic objects. IEEE Ant. Wireless Prop. Lett., 13, 1271-1274.
  • [3] Son, W.I., Lim, W.G., Lee, M.Q., Min, S.B., Yu, J.W. (2010). Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver. IEEE Trans. Ant. Prop., 58(5), 1503-1510.
  • [4] Wang, M.S., Zhu, X.Q., Guo, Y.X., Wu, W. (2018). Miniaturized dual-band circularly polarized quadruple inverted-F antenna for GPS applications. IEEE Ant. Wireless Prop. Lett., 17(6), 1109-1113.
  • [5] Qu, L., Piao, H., Qu, Y., Kim, H.H., Kim, H. (2018). Circularly polarised MIMO ground radiation antennas for wearable devices. Electronics Lett., 54(4), 189-190.
  • [6] Cheng, W., Li, D. (2017). Circularly polarised filtering monopole antenna based on miniaturized coupled filter. Electronics Lett., 53(11), 700-702.
  • [7] Zahran, S.R., Hu, Z., Abdalla, M.A. (2017). A flexible circular polarized wide band slot antenna for indoor IoT applications. IEEE Int. Symp. Ant. Prop., 1163-1164.
  • [8] Cao, Y., Hong, W., Deng, L., Li, S., Yin, L. (2016). A 2.4 GHz circular polarization rectenna with harmonic suppression for microwave power transmission. IEEE Int. Conf. IoT, 359-363.
  • [9] Huang, F.J., Yo, T.C., Lee, C.M., Luo, C.H. (2012). Design of circular polarization antenna with harmonic suppression for rectenna application. IEEE Ant. Wireless Prop. Lett., 11, 592-595.
  • [10] Mener, S., Gillard, R., Roy, L. (2017). A dual-band dual-circular-polarization antenna for Ka-band satellite communications. IEEE Ant. Wireless Prop. Lett., 16, 274-277.
  • [11] Han, J.H., Myung, N.H. (2014). Novel feed network for circular polarization antenna diversity. IEEE Ant. Wireless Prop. Lett., 13, 979-982.
  • [12] Lin, W., Wong, H. (2017). Wideband circular-polarization reconfigurable antenna with L-Shaped feeding probes. IEEE Ant. Wireless Prop. Lett., 16, 2114-2117.
  • [13] Ogurtsov, S., Koziel, S. (2016). Automated design of circularly polarized microstrip patch antennas with improved axial ratio. Loughborough Ant. Prop. Conf., 1-5.
  • [14] Mohammadi, S., Nourinia, J., Ghobadi, C., Pourahmadazar, J., Shokri, M. (2013). Compact broadband circularly polarized slot antenna using two linked elliptical slots for C-band applications. IEEE Ant. Wireless Prop. Lett., 12, 1094-1097.
  • [15] Wong, K.L., Huang, C.C., Chen, W.S. (2002). Printed ring slot antenna for circular polarization. IEEE Trans. Ant. Prop., 50(1), 75-77.
  • [16] Wang, C.J., Shih, M.H., Chen, L.T. (2015). A wideband open-slot antenna with dual-band circular polarization. IEEE Ant. Wireless Prop. Lett., 14, 1306-1309.
  • [17] Kumar, A., Deegwal, J.K., Sharma, M.M. (2018). Design of multi-polarised quad-band planar antenna with parasitic multistubs for multiband wireless communication. IET Microwaves, Ant. Prop., 12(5), 718-726.
  • [18] Kovitz, J.M., Rajagopalan, H., Rahmat-Samii, Y. (2016). Circularly polarised half E-shaped patch antenna: a compact and fabrication-friendly design. IET Microwaves, Ant. Prop., 10(9), 932-938.
  • [19] Wang, K.X., Wong, H. (2015). A circularly polarized antenna by using rotated-stair dielectric resonator. IEEE Ant. Wireless Prop. Lett., 14, 787-790.
  • [20] Tang, H., Wang, K., Wu, R., Yu, C. (2016). Compact broadband CP monopole antenna with tilted branch. Electronics Lett., 52(21), 1739-1740.
  • [21] Zhang, X.Y., Jiao, Y.C., Zhang, Z., Li, B. (2018). Miniaturised CP aperture antenna with tri-mode operation for broadening bandwidth. Electronics Lett., 54(3), 122-124.
  • [22] Sun, Y.X., Leung, K.W., Mao, J.F. (2018). Dualfunction dielectric resonator as antenna and phase-delay-line load: designs of compact circularly polarized/differential antennas. IEEE Trans. Ant. Prop., 66(1), 414-419.
  • [23] Ghassemi, M., Bakr, M., Sangary, N. (2013). Antenna design exploiting adjoint sensitivity-based geometry evolution. IET Microwaves Ant. Prop., 7(4), 268-276.
  • [24] Toivanen, J.I., Makinen, R.A.E., Rahola, J., Jarvenpa, S., Yla-Oijala, P. (2010). Gradient-based shape optimisation of ultra-wideband antennas parameterised using splines. IET Microwaves, Ant. Prop., 4(9), 1406-1414.
  • [25] Zhou, W., Liu, J., Long, Y. (2017). A broadband and high-gain planar complementary yagi array antenna with circular polarization. IEEE Trans. Ant. Prop., 65(3), 1446-1451.
  • [26] Ahdi Rezaeieh, S., Abbosh, A., Antoniades, M.A. (2013). Compact CPW-fed planar monopole antenna with wide circular polarization bandwidth. IEEE Ant. Wireless Prop. Lett., 12, 1295-1298.
  • [27] Nocedal, J., Wright, S. (2006). Numerical Optimization. 2nd edition, Springer, New York.
  • [28] Conn, A., Gould, N.I.M., Toint, P.L. (2000). Trust-region methods. MPS-SIAM Series on Optimization, Philadelphia.
  • [29] Koziel, S., Bekasiewicz, A. (2016). els. World Scientific.
  • [30] CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013.
  • [31] Volakis, J., Chen, C.C., Fujimoto, K. (2010). Small Antennas: Miniaturization Techniques and Appliations. McGraw-Hill Professional.
  • [32] Koziel, S., Bekasiewicz, A. (2017). Expedited simulation-driven design optimization of UWB antennas by means of response features. Int. J. RF Microwave CAE, 27(6), 1-8.
  • [33] Johanesson, D.O., Koziel, S., Bekasiewicz, A. (2017). An improved procedure for simulation-driven miniaturization of antenna structures. IEEE International Symposium on Antennas and Propagation, San Diego.
  • [34] Wu, Z., Li, L., Li, Y., Chen, X. (2016). Metasurface superstrate antenna with wideband circular polarization for satellite communication application. IEEE Ant. Wireless Prop. Lett., 15, 374-377.
  • [35] Fujimoto, T., Jono, K. (2014). Wideband rectangular printed monopole antenna for circular polarisation, IET Microwaves, Ant. Prop., 8(9), 649-656.
Uwagi
EN
1. The authors would like to thank Computer Simulation Technology GmbH, a Dassault Systèmes Company, Darmstadt, Germany, for making CST Microwave Studio available. This work was supported in part by the Icelandic Centre for Research (RANNIS) Grant 174114051, and by National Science Centre of Poland Grant 2015/17/B/ST6/01857.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-768fdf55-e23d-4a4d-bf0b-903e9983b468
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.