PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deuterium isotope effects in oxidation of dopamine and norepinephrine catalyzed by horseradish peroxidase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deuterium kinetic isotope effects (KIE’s) in the reaction of oxidation of dopamine (DA) catalyzed by the enzyme horseradish peroxidase (HRP, EC 1.11.1.7) was determined using a non-competitive spectrophotometric method. For kinetic studies, the deuterium ring labelled isotopomer [2’,5’,6’-2H3]-dopamine was synthesized using acid catalyzed isotopic exchange between authentic dopamine and heavy water. Deuterium solvent isotope effects (SIE’s) for dopamine and norepinephrine were determined separately for the enzymatic oxidation carried out in the presence or absence of hydrogen peroxide. Some mechanistic details of enzymatic oxidation of dopamine and norepinephrine to corresponding catecholchromes catalyzed by HRP were discussed.
Czasopismo
Rocznik
Strony
475--479
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Department of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland, Tel.: +48 22 822 0211 ext. 509, Fax: +48 22 822 0211 ext. 434
autor
  • Department of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland, Tel.: +48 22 822 0211 ext. 509, Fax: +48 22 822 0211 ext. 434
autor
  • Department of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland, Tel.: +48 22 822 0211 ext. 509, Fax: +48 22 822 0211 ext. 434
Bibliografia
  • 1. Adak S, Bandyopadhyay U, Bandyopadhyay D, Banerjee RK (1998) Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2 – and H2O2. Biochemistry 37:16922–16933
  • 2. Bandyopadhyay U, Adak S, Banerjee RK (1999) Role of active site residues in peroxidase catalysis: studies on horseradish peroxidase. PINSA B 65;5:315–330
  • 3. Bindoli A, Scutari G, Rigobello MP (1999) The role of adrenochrome in stimulating the oxidation of catecholamines. Neurotoxicity Res 1:71–80
  • 4. Bisaglia M, Memmi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine. J Biol Chem 282;21:15597–15605
  • 5. Domino EF (1980) Monoamine oxidase substrates and substrate affinity. Schizophr Bull 6;2:292–297
  • 6. Drożak J, Bryła J (2005) Dopamine: not just a neurotransmitter. Postępy Higieny i Medycyny Doświadczalnej 59:405–420 (in Polish, abstracts in English)
  • 7. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349
  • 8. Foster HD (1981) The adrenochrome hypothesis of schizophrenia revisited. Orthomolecular Psychiatry 10:98–118
  • 9. Foster HD (2003) What really causes schizophrenia, http://www.hdfoster.com
  • 10. Fowler JS, Logan J, Volkow ND, Wang GJ (2005) Translational neuroimaging: positron emission tomography studies of monoamino oxidase. Mol Imaging Biol 7:377–387
  • 11. Gary R, Bates RG, Robinson RA (1964) Second dissociation constant of deuteriophosphoric acid in deuterium oxide from 5 to 50°: Standardization of a pD scale. J Phys Chem 68:3806–3809
  • 12. Graumann R, Paris I, Martinez-Alvarado P et al. (2002) Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol J Pharmacol 54:573–579
  • 13. Kalyanaraman B, Felix CC, Sealy RC (1985) Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes. Environ Health Perspect 64:185–198
  • 14. Karim MM, Alam SM, Lee SH (2007) Spectrofluorimetric estimation of norepinephrine using ethylenediamine condensation method. J Fluorescence 17:427–436
  • 15. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56;3:658–666
  • 16. Manini P, Panzella L, Napolitano A, d’Ischia M (2007) Oxidation chemistry of norepinephrine: partitioning of the o-quinon between competing cyclization and chain breakdown pathways and their roles in melanin formation. Chem Res Toxicol 20:1549–1555
  • 17. Medina MA, Urdiales JL, Rodriguez-Caso C, Ramirez FJ, Sanchez-Jimenez F (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59
  • 18. Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369
  • 19. Northrop DB (1975) Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14:2644–2651
  • 20. Pająk M, Kańska M (2006) Synthesis of isotopomers of dopamine labeled with deuterium or tritium. J Labelled Compd Radiopharm 49:1061–1067
  • 21. Papajak E, Kwiecień RA, Rudziński J et al. (2006) Mechanism of the reaction catalyzed by DL-2-haloacid dehalogenase as determined from kinetic isotope effects. Biochemistry 45:6012–6017
  • 22. Schowen RL (1972) Mechanistic deductions from solvent isotope effects. Prog Phys Org Chem 9:275–332
  • 23. Smythies J (2002) The adrenochrome hypothesis of schizophrenia revisited. Neurotoxicity Res 4;2:147–150
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-768f9ac4-2396-472b-a0c8-1636f58932c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.