PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and an adaptive fuzzy logic controller of solar thermal power plant

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie i adaptacyjny regulator logiki rozmytej elektrowni słonecznej
Języki publikacji
EN
Abstrakty
EN
This article aims to model and control a solar thermal power plant. The modeling and the dynamic behavior of the system have been well studied and carried out the variation of the exchanger temperature by acting on different parameters, such as the length, the exchange surface, and the exchange coefficient. A comparison was made between conventional PI control and an advanced AFLC-PI fuzzy logic-based control to drive the steam turbine. This advanced command improves the system's robustness with respect to internal disturbances (parametric variations) and external disturbances (sudden pressure variations).
PL
Celem artykułu jest modelowanie i sterowanie elektrownią słoneczną. Modelowanie i dynamiczne zachowanie systemu zostały dobrze zbadane i przeprowadzono zmianę temperatury wymiennika poprzez oddziaływanie na różne parametry, takie jak długość, powierzchnia wymiany i współczynnik wymiany. Dokonano porównania między konwencjonalnym sterowaniem PI a zaawansowanym sterowaniem opartym na logice rozmytej AFLC-PI do napędzania turbiny parowej. To zaawansowane polecenie poprawia odporność systemu na zakłócenia wewnętrzne (zmiany parametryczne) i zewnętrzne (nagłe zmiany ciśnienia).
Rocznik
Strony
257--263
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • University of ENPO – ORAN
  • Dept. of Mechanic and Electromechanics, Institute of Science and Technologies, Abdelhafid Boussouf University centre, Mila, GE Laboratory Saida University, Algeria
autor
  • Department of Electrical Engineering, Faculty of Applied Science, L2GEGI Laboratory, University of TIARET, Tiaret, Algeria
  • University of ENPO – ORAN
Bibliografia
  • [1] Ahmedzai S., Mckinna A., Afghanistan electrical energy and trans-boundary water systems analyses: Challenges and opportunities, Energy Reports., 4 (2018), 435-469
  • [2] Wang Y., Qu K., Chen X and Riffat S., Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house, Energy., 241 (2022), 122935
  • [3] Energy Information Administration., World energy consumption by source and sector, Monthly Energy Review (April 2022).,
  • [4] Ciavarella, A., Cotterill, D., Stott, P. et al., Prolonged Siberian heat of 2020 almost impossible without human influence, Climatic Change., 9 (2021), No. 166
  • [5] International Energy Agency., World CO2 emissions from fuel combustion by fuel, 1971-2019, Online: https://www.iea.org/data-and-statistics/charts/world-co2- emissions-from-fuel-combustion-by-fuel-1971-2019., Consulted: 26/08/2022.
  • [6] Zara-Moya, E., High Efficiency Plants and Building Integrated Renewable Energy Systems, Handbook of Energy Efficiency in Buildings., 2019, 441-495
  • [7] Zhang, T., Wang, R., Concentrating Solar Thermal Power, A Comprehensive Guide to Solar Energy Systems., 2018, 127-148
  • [8] Murshitha Shajahan M. S., Najumnissa Jamal D., Mathew J and Anas Ali Akbar A., Improvement in efficiency of thermal power plant using optimization and robust controller, Case Studies in Thermal Engineering., 33 (2022), 101891
  • [9] Alobaid F., Mertens N., Starkloff R and Lanz T., Progress in dynamic simulation of thermal power plants, Progress in Energy and Combustion Science., 59 (2017), 79-162
  • [10] Al-Maliki W. A. K., Hadi A. S., Al-Khafaji H. M. H and Alobaid F., Dynamic modelling and advanced process control of power block for a parabolic through solar power plant, Energies., 15 (2022), No.129, 1-20
  • [11] Cao H., Wang Y and Jia L., Adaptive Neuro-Fuzzy Inference System-Based Pulverizing Capability Model for Running Time Assessment of Ball Mill Pulverizing System, Przegląd Elektrotechniczny., 5 (2013), No.89, 122-127
  • [12] Liao X., Liu K., Qin L., Wang N., Ma Y and Chen Z., Cooperative DMPC-Based Load Frequency Control of AC/DC Interconnected Power System with Solar Thermal Power Plant, 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)., 2018, 341-346
  • [13] Terunuma R., Ohmori H., Model predictive control for concentrating solar power plants with thermal energy storage system, 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)., 2020, 274- 279
  • [14] Chochowski A., Czekalski D and Obstawski P., Dynamic properties flat solar collectors, Przegląd Elektrotechniczny., 6 (2010), 257-263
  • [15] Bishoyi D., Sudhakar K., Modeling and performance simulation of 100MW PTC based solar thermal power plant in Udaipur India, Case Studies in Thermal Engineering., 10 (2017), 216-226
  • [16] Salgado-Conrado L., A review on sun position sensors used in solar applications, Renewable and Sustainable Energy Reviews., 82 (2018), No.3, 2128-2146
  • [17] Estrada-López J. J., Castillo-Atoche A. A and Sanchez-Sinencio E., Design and Fabrication of a 3-D Printed Concentrating Solar Thermoelectric Generator for Energy Harvesting Based Wireless Sensor Nodes, IEEE Sensors Letters., 3 (2019), No.11, 1-4
  • [18] Ni G., Li G and Boriskina S., Steam generation under one sun enabled by a floating structure with thermal concentration, Nat Energy., 1 (2016), 16126
  • [19] Hossain M. S., Saidur R., Fayaz H., Rahim N. A., Islam M. R., Ahamed J. U., and Rahman M. M., Review on solar water heater collector and thermal energy performance of circulating pipe, Renewable and Sustainable Energy Reviews., 15 (2011), No.11, 3801-3812
  • [20] Pranesh V., Velraj R., Christopher S and Kumaresan V., A 50-year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications, Solar Energy., 187 (2019), 293-340
  • [21] Hussaini Z. A., King P and Sansom C., Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields, Sustainability., 12 (2020), 1-22
  • [22] Mariana S., Bretado-de L. R., Carlos I and Nigam K. D. P., An overview of sustainability of heat exchangers and solar thermal applications with nanofluids: A review, Renewable and Sustainable Energy Reviews., 142 (2021), 10855
  • [23] Cai X. F., Zhang X. L., Zhou P., Rahim N. A., Islam M. R., Ahamed J. U., Rahman M. M., Xu D., Cai W. J., Chen X. Y., Shao Y. X and Wang J., Governor System for 300MW Hydraulic Generator in Xiangshuijian Pumped-Storage Power Station, Advanced Materials Research., 347 (2012), 525-536
  • [24] Aurousseau A., Vuillerme V and Bezian J. J., Control systems for direct steam generation in linear concentrating solar power plants – A review, Renewable and Sustainable Energy Reviews., 56 (2016), 611-630
  • [25] Birnba J., Eck M., Hirsch T., Lehmann, D and Zimmermann G., A Direct Steam Generation Solar Power Plant with Integrated Thermal Storage, ASME. J. Sol. Energy Eng., 132 (2010), No.3, 031014
  • [26] Jelali M., Huang B., Detection and Diagnosis of Stiction in Control Loops, Advances in Industrial Control., Springer, doi:10.1007/978-1-84882-775-2
  • [27] Al Ibrahmi E., Lachhab S. E., Hamdaoui F., El Amrani I., Achhar A and Dlimi L., Modeling of a cylindro-parabolic solar collector and simulation by Matlab software, International Journal of Scientific & Engineering Research., 8 (2017), No. 10, 1135-1139
  • [28] Bougriou C., Baadache K., Shell-and-double concentric-tube heat exchangers software, Heat Mass Transfer., 46 (2010), 315-322
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76864ca1-6992-411a-99c8-c8acb4eae03b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.