PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comprehensive review of advancements, challenges, design, and environmental impact in floating photovoltaic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Floating photovoltaic (FPV) systems have emerged as an innovative and sustainable solution for renewable energy generation, offering advantages such as enhanced efficiency, land conservation, and integration with aquatic environments. This review examines critical factors influencing the efficiency, cost-effectiveness, and long-term viability of FPV systems compared to conventional land-based photovoltaic installations. Key considerations include the natural cooling effect of water, structural stability under environmental forces, electrical system optimization for safety and performance, and site selection to balance ecological preservation with energy generation. The study also explores maintenance strategies to address challenges like biofouling and corrosion, along with the environmental impacts of FPV systems on aquatic ecosystems, water quality, and biodiversity. Advanced corrosion protection methods, including multilayer coatings and cathodic protection, are highlighted for their role in extending system durability, while innovations in design, such as compliant modular structures, address stability in variable-depth and high-stress environments. FPV systems benefiting from reduced maintenance and enhanced energy output due to water’s cooling effect. Case studies, such as the Huainan Coal Mine FPV system in China and the Omkareshwar Reservoir FPV project in India, demonstrate the transformative potential of FPV technology in mitigating climate change, optimizing land use, and promoting energy security. The review provides a comprehensive framework for successful FPV system deployment, offering actionable insights for engineers, policymakers, and stakeholders to advance sustainable energy solutions.
Twórcy
autor
  • Energy Engineering Department, Engineering Technology Faculty, Zarqa University, Zarqa 13110, Jordan
autor
  • Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, United States
  • Faculty of Environmental Engineering and Energy, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila, Jordan
Bibliografia
  • 1. A. Azzuni, A. Aghahosseini, M. Ram, D. Bogdanov, U. Caldera, C. Breyer, Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050, Sustainability 12 (2020) 4921. https://doi.org/10.3390/su12124921.
  • 2. A. Alahmer, S. Ajib, Solar cooling technologies: State of art and perspectives, Energy Convers. Manag. 214 (2020) 112896. https://doi.org/10.1016/j. enconman.2020.112896.
  • 3. M.M. Hasan, S. Hossain, M. Mofijur, Z. Kabir, I.A. Badruddin, T.M. Yunus Khan, E. Jassim, Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions, Energies 16 (2023). https://doi.org/10.3390/en16186456.
  • 4. A. Alahmer, S. Alsaqoor, Energy efficient of Using Chilled Water System for Sustainable Health Care Facility Operating by Solar Photovoltaic Technology, Energy Procedia 156 (2019) 65–71.
  • 5. M. Alanazi, H. Attar, A. Amer, A. Amjad, M. Mohamed, M.S. Majid, K. Yahya, M. Salem, A Comprehensive Study on the Performance of Various Tracker Systems in Hybrid Renewable Energy Systems, Saudi Arabia, Sustainability 15 (2023) 10626.
  • 6. S. Alsaqoor, A. Alqatamin, A. Alahmer, Z. Nan, Y. Al-Husban, H. Jouhara, The impact of phase change material on photovoltaic thermal (PVT) systems: A numerical study, Int. J. Thermofluids 18 (2023) 100365.
  • 7. S. Mallak, M. Kanan, S. Alsadi, G. Sabbah, S. Zahran, H. Attar, A. Hamdan, Predicting the behavior of solar energy in tulkarm city using Markov chains and fuzzy Markov chains, Appl. Math. Inf. Sci. 17 (2023) 285–292.
  • 8. I.B. Turner, C.M. Pansino, M.J.S. de Lemos, Land– Energy–Food Nexus: Competition and societal impact of land use for sustainable energy and food production – A review, J. Energy Resour. Technol. 145 (2023) 110802. https://doi.org/10.1115/1.4062507.
  • 9. Y. Jin, S. Hu, A.D. Ziegler, L. Gibson, J.E. Campbell, R. Xu, D. Chen, K. Zhu, Y. Zheng, B. Ye, F. Ye, Z. Zeng, Energy production and water savings from floating solar photovoltaics on global reservoirs, Nat. Sustain. 6 (2023) 865–874. https://doi.org/10.1038/s41893-023-01089-6.
  • 10. A. Amer, H. Attar, S. As’ad, S. Alsaqoor, I. Colak, A. Alahmer, M. Alali, G. Borowski, M. Hmada, A. Solyman, Floating photovoltaics: assessing the potential, advantages, and challenges of harnessing solar energy on water bodies, J. Ecol. Eng. 24 (2023) 324– 339. https://doi.org/10.12911/22998993/170917.
  • 11. R. C.J., K.H. Lim, J.C. Kurnia, S. Roy, B.J. Bora, B.J. Medhi, Towards sustainable power generation: Recent advancements in floating photovoltaic technologies, Renew. Sustain. Energy Rev. 194 (2024) 114322. https://doi.org/https://doi.org/10.1016/j.rser.2024.114322.
  • 12. Y. Lian, Q. Chen, S. Shen, J. Zheng, W. Chen, S.C. Yim, Numerical Study on the Dynamic Response of Mooring Systems for an Offshore Floating Photovoltaic Platform, (2024). https://doi.org/10.1115/ OMAE2024-120796.
  • 13. F. Wu, K. Zhang, X. Cheng, J. Wang, C. Xie, J. Yu, Y. Gu, Analysis of Hydrodynamic Performance and Mooring Dynamic Response of Offshore Dual-Module Floating Photovoltaic Platform, (2024). https://doi.org/10.1115/OMAE2024-125502.
  • 14. Y. Tang, X. Chen, G. Huang, M. Chen, K. Zhang, Y. Jiang, T. Li, T. Tao, Y. Yang, Dynamic analysis of multi-module floating photovoltaic platforms with composite mooring system by considering tidal variation and platform configuration, Ocean Eng. 312 (2024) 119243. https://doi.org/https://doi.org/10.1016/j.oceaneng.2024.119243.
  • 15. Y. Tang, M. Chen, Y. Jiang, T. Li, K. Zhang, H. Zhou, Hydrodynamic and Dynamic Analysis of a Multi-Module Semi-Submersible Photovoltaic Platform Considering Tidal Variation, (2024). https://doi.org/10.1115/OMAE2024-124385.
  • 16. A. Djalab, Z. Djalab, A. El Hammoumi, G. Marco TINA, S. Motahhir, A.A. Laouid, A comprehensive Review of Floating Photovoltaic Systems: Tech Advances, Marine Environmental Influences on Offshore PV Systems, and Economic Feasibility Analysis, Sol. Energy 277 (2024) 112711. https://doi.org/ https://doi.org/10.1016/j.solener.2024.112711.
  • 17. H. Cao, J. Du, S. Zhao, D. Zhang, A. Chang, Analysis of nonlinear hydrodynamic properties of shallow-draft floating photovoltaic structure, (2024). https://doi.org/10.1115/OMAE2024-127917.
  • 18. T. Trzepieciński, T. Batu, F. Kibrete, H.G. Lemu, Application of composite materials for energy generation devices, J. Compos. Sci. 7 (2023) 55. https://doi.org/10.3390/jcs7020055.
  • 19. F. Gavin Surjadi, F.P. Bakti, C. Jin, P.K.P. Simamora, Global Response Performance of HDPE Based Offshore Floating Solar Farm by Using Beam- Floater Model, (2024). https://doi.org/10.1115/ OMAE2024-126115.
  • 20. S. Benjamins, B. Williamson, S.-L. Billing, Z. Yuan, M. Collu, C. Fox, L. Hobbs, E.A. Masden, E.J. Cottier-Cook, B. Wilson, Potential environmental impacts of floating solar photovoltaic systems, Renew. Sustain. Energy Rev. 199 (2024) 114463. https://doi.org/https://doi.org/10.1016/j.rser.2024.114463.
  • 21. C. Veliathur Chinnasamy Srinivasan, P.K. Soori, F.A. Ghaith, Techno-Economic Feasibility of the Use of Floating Solar PV Systems in Oil Platforms, Sustainability 16 (2024) 1039. https://doi.org/10.3390/su16031039.
  • 22. M.A. Koondhar, L. Albasha, I. Mahariq, B.B. Graba, E. Touti, Reviewing floating photovoltaic (FPV) technology for solar energy generation, Energy Strateg. Rev. 54 (2024) 101449. https://doi.org/ https://doi.org/10.1016/j.esr.2024.101449.
  • 23. K. Ilgen, D. Schindler, S. Wieland, J. Lange, The impact of floating photovoltaic power plants on lake water temperature and stratification, Sci. Rep. 13 (2023) 7932. https://doi.org/10.1038/ s41598-023-34751-2.
  • 24. S.A. Chowdhury, National Solar Energy Roadmap, 2021–2041, Sustain. Renew. Energy Dev. Auth. (SREDA). Retrieved July 11 (2020) 2021.
  • 25. K.K. Agrawal, S.K. Jha, R.K. Mittal, S. Vashishtha, Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India, Energy Sustain. Dev. 66 (2022) 287–295. https://doi.org/https://doi.org/10.1016/j.esd.2021.12.007.
  • 26. S. Sulaeman, E. Brown, R. Quispe-Abad, N. Müller, Floating PV system as an alternative pathway to the amazon dam underproduction, Renew. Sustain. Energy Rev. 135 (2021) 110082. https://doi.org/https://doi.org/10.1016/j.rser.2020.110082.
  • 27. M. Elshafei, A. Ibrahim, A. Helmy, M. Abdallah, A. Eldeib, M. Badawy, S. AbdelRazek, Study of Massive Floating Solar Panels over Lake Nasser, J. Energy 2021 (2021) 6674091. https://doi.org/ https://doi.org/10.1155/2021/6674091.
  • 28. T.K. Adrianti, M. Nasir, P. Anugrah, A 48-MW floating photovoltaic design and integration to a grid, Indones. J. Electr. Eng. Comput. Sci. 30 (2023) 1331–1338. https://doi.org/10.11591/ijeecs.v30.i3.pp1331-1338.
  • 29. N. Beithou, M.A. Mansour, N. Abdellatif, S. Alsaqoor, S. Tarawneh, A.H. Jaber, A. Andruszkiewicz, M. Alsqour, G. Borowski, A. Alahmer, J. Siderska, Effect of the Residential Photovoltaic Systems Evolution on Electricity and Thermal Energy Usage in Jordan, Adv. Sci. Technol. Res. J. 17 (2023) 79–87. https://doi.org/10.12913/22998624/163257.
  • 30. G. Lorenzini, M. Kamarposhti, A. Solyman, Maximum power point tracking in the photovoltaic module using incremental conductance algorithm with variable step length, J. Eur. Des Systèmes Autom. 54 (2021) 395–402. https://doi.org/10.18280/ jesa.540302.
  • 31. S. Al-Dahidi, B. Rinchi, M. Alrbai, A. Alahmer, Enhancing daily energy prediction in solar photovoltaic systems: weighted k-nearest neighbors with Pearson correlation integration. In: 12th Int. Conf. Intell. Syst., IEEE (2024) 1–6.
  • 32. I.T. Ali, K. Yahya, M. Aldababsa, A. Amer, M. Hafez, R.D. Sarreb, Optimum-location of PV in distribution system using NR method with Matlab-ETap program. In: 2nd Int. Eng. Conf. Electr. Energy, Artif. Intell., (2023) 1–5. https://doi.org/10.1109/ EICEEAI60672.2023.10590581.
  • 33. I.T. Ali, A.E.M. Yahya, A. Amer, R.D. Sarreb, K. Yahya, M. Aldababsa, M. Hafez, Optimizing PV system placement in Kirkuk City power system using PSO algorithm. In: 2nd Int. Eng. Conf. Electr. Energy, Artif. Intell. (2023) 1–5. https://doi.org/10.1109/ EICEEAI60672.2023.10590146.
  • 34. A. Saxena, E. Cuce, D. Bandhu Singh, P. Mert Cuce, P. Gupta, A. Suryavanshi, M. Farrokhi, A.A. El-Sebaii, A thermodynamic review on solar ponds, Sol. Energy 242 (2022) 335–363. https://doi.org/https://doi.org/10.1016/j.solener.2022.07.016.
  • 35. M. Kumar, H. Mohammed Niyaz, R. Gupta, Challenges and opportunities towards the development of floating photovoltaic systems, Sol. Energy Mater. Sol. Cells 233 (2021) 111408. https://doi.org/https://doi.org/10.1016/j.solmat.2021.111408.
  • 36. F. Ali, A. Etemad-Shahidi, R.A. Stewart, M.J. Sanjari, J.A. Hayward, R.C. Nicholson, Co-located offshore wind and floating solar farms: A systematic quantitative literature review of site selection criteria, Renew. Energy Focus 50 (2024) 100611. https://doi.org/https://doi.org/10.1016/j.ref.2024.100611.
  • 37. T.I. Ingo, L. Gyoh, Y. Sheng, M.K. Kaymak, A.D. Şahin, H.M. Pouran, Accelerating the Low-Carbon Energy Transition in Sub-Saharan Africa through Floating Photovoltaic Solar Farms, Atmosphere (Basel). 15 (2024) 653. https://doi.org/10.3390/ atmos15060653.
  • 38. H.M. Pouran, M. Padilha Campos Lopes, T. Nogueira, D. Alves Castelo Branco, Y. Sheng, Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology, IScience 25 (2022) 105253. https://doi.org/10.1016/j.isci.2022.105253.
  • 39. H. Meschede, P. Bertheau, S. Khalili, C. Breyer, A review of 100% renewable energy scenarios on islands, WIREs Energy Environ. 11 (2022) e450. https://doi.org/https://doi.org/10.1002/wene.450.
  • 40. A.B. Melek, S. Gökmener, E. Haspolat, D.D. Çiçek, M. Deveci, E. Oğuz, M. Khorasanchi, Fuzzy Einstein-based decision-making model for the evaluation of site selection criteria of floating photovoltaic system, Ocean Eng. 301 (2024) 117521. https://doi.org/https://doi.org/10.1016/j. oceaneng.2024.117521.
  • 41. F. Karipoğlu, K. Koca, E. İlbahar, Convenient Site Selection of a Floating PV Power Plant in Türkiye by using GIS-Fuzzy Analytical Hierarchy Process, Environ. Sci. Pollut. Res. 31 (2024) 23193–23210. https://doi.org/10.1007/s11356-024-32470-3.
  • 42. A. Garrod, S. Neda Hussain, A. Ghosh, S. Nahata, C. Wynne, S. Paver, An assessment of floating photovoltaic systems and energy storage methods: A comprehensive review, Results Eng. 21 (2024) 101940. https://doi.org/https://doi.org/10.1016/j. rineng.2024.101940.
  • 43. I.F. Herlambang, S. Lestari, T. Yuniarti, Optimizing Solar Potential: Site Potential Selection for Floating Photovoltaics in the Sepaku Semoi Dam Reservoir, IOP Conf. Ser. Earth Environ. Sci. 1343 (2024) 12022. https://doi.org/10.1088/1755-1315/1343/1/012022.
  • 44. J. Chen, R.B. Gilbert, Calibration of Load and Resistance Factors of API RP 2A-LRFD, for Fixed Offshore Platforms, J. Struct. Eng. 147 (2021) 4020339. https://doi.org/10.1061/(ASCE) ST.1943-541X.000291.
  • 45. C. Ng, R. Jiang, Classification principles for very large floating structures. In WCFS2019: Proceedings of the World Conference on Floating Solutions, in: C.M. Wang, S.H. Lim, Z.Y. Tay (Eds.), Springer Singapore, Singapore, 2020: pp. 235–251.
  • 46. P. Tulet, B. Aunay, G. Barruol, C. Barthe, R. Belon, S. Bielli, F. Bonnardot, O. Bousquet, J.-P. Cammas, J. Cattiaux, F. Chauvin, I. Fontaine, F.R. Fontaine, F. Gabarrot, S. Garabedian, A. Gonzalez, J.-L. Join, F. Jouvenot, D. Nortes-Martinez, D. Mékiès, P. Mouquet, G. Payen, G. Pennober, J. Pianezze, C. Rault, C. Revillion, E.J. Rindraharisaona, K. Samyn, C. Thompson, H. Vérèmes, ReNovRisk: a multidisciplinary programme to study the cyclonic risks in the South-West Indian Ocean, Nat. Hazards 107 (2021) 1191–1223. https://doi.org/10.1007/s11069-021-04624-w.
  • 47. O.S. Martin, Wind Resource Estimation and Conceptual Design of a Near Future Wind Turbine for Tropical Cyclone Winds, The Florida State University, 2022.
  • 48. A. Sen, S. Karmakar, OSH risk perception of safety managers and scope for ergonomics design interventions in floating solar photovoltaic projects BT - ergonomics for design and innovation. In: D. Chakrabarti, S. Karmakar, U.R. Salve (Eds.), Springer International Publishing, Cham, 2022: pp. 871–880.
  • 49. J. Charles Rajesh Kumar, M.A. Majid, Floating solar photovoltaic plants in India – A rapid transition to a green energy market and sustainable future, Energy Environ. 34 (2021) 304–358. https://doi.org/10.1177/0958305X211057185.
  • 50. R. Claus, M. López, A methodology to assess the dynamic response and the structural performance of floating photovoltaic systems, Sol. Energy 262 (2023) 111826. https://doi.org/https://doi.org/10.1016/j.solener.2023.111826.
  • 51. W. Shi, C. Yan, Z. Ren, Z. Yuan, Y. Liu, S. Zheng, X. Li, X. Han, Review on the development of marine floating photovoltaic systems, Ocean Eng. 286 (2023) 115560. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.115560.
  • 52. K. Lee, B. Park, B.W. Kim, A Study on the Floating Body Performance and Mooring System Design of an Offshore Floating Solar System with Glass Fiber Reinforced Polymer Frame Members, J. Korean Sol. Energy Soc. 44 (2024) 73–90. https://doi.org/10.7836/kses.2024.44.2.073.
  • 53. J. Jin, L. Zhang, Z. Lin, J. Kong, Z. Gao, Optimization of Offshore FPV Modules in Early Design Phase, ASME 2024 43rd Int. Conf. Ocean. Offshore Arct. Eng. June 9–14, 2024 Singapore. 7 (2024) V007T09A090. https://doi.org/10.1115/ OMAE2024-121546.
  • 54. R. Claus, M. López, Key issues in the design of floating photovoltaic structures for the marine environment, Renew. Sustain. Energy Rev. 164 (2022) 112502. https://doi.org/https://doi.org/10.1016/j. rser.2022.112502.
  • 55. R.M. Ghoniem, A. Alahmer, H. Rezk, S. As’ad, Optimal design and sizing of hybrid photovoltaic/fuel cell electrical power system, Sustainability 15 (2023) 12026. https://doi.org/10.3390/su151512026.
  • 56. M. Fereshtehpour, R. Javidi Sabbaghian, A. Farrokhi, E.B. Jovein, E. Ebrahimi Sarindizaj, Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures, Renew. Energy 171 (2021) 1171–1187. https://doi.org/https://doi.org/10.1016/j.renene.2020.12.005.
  • 57. J. Zhou, B. Liang, G. Wang, J. Jing, D. Li, W. Huang, Standardization proposal and product design of offshore floating photovoltaic system cables, J. Phys. Conf. Ser. 2592 (2023) 12041. https://doi.org/10.1088/1742-6596/2592/1/012041.
  • 58. L. Alhmoud, Why Does the PV Solar Power Plant Operate Ineffectively?, Energies 16 (2023) 4074. https://doi.org/10.3390/en16104074.
  • 59. Z.M. Mahdi, A.N. Al-Shamani, A. Al-Manea, H.A. Al-zurfi, R. Al-Rbaihat, K. Sopian, A. Alahmer, Enhancing photovoltaic thermal (PVT) performance with hybrid solar collector using phase change material, porous media, and nanofluid, Sol. Energy 283 (2024) 112983. https://doi.org/https://doi.org/10.1016/j.solener.2024.112983.
  • 60. R.O. Yakubu, D.A. Quansah, L.D. Mensah, W. Ahiataku-Togobo, P. Acheampong, M.S. Adaramola, Comparison of ground-based and floating solar photovoltaic systems performance based on monofacial and bifacial modules in Ghana, Energy Nexus 12 (2023) 100245. https://doi.org/https://doi.org/10.1016/j.nexus.2023.100245.
  • 61. E.C. Edwards, A. Holcombe, S. Brown, E. Ransley, M. Hann, D. Greaves, Evolution of floating offshore wind platforms: A review of at-sea devices, Renew. Sustain. Energy Rev. 183 (2023) 113416. https://doi.org/https://doi.org/10.1016/j.rser.2023.113416.
  • 62. A. Badhoutiya, Advancements in PV technology floating photovoltaics. In: 5th Int. Conf. Smart Syst. Inven. Technol. (2023) 382–385. https://doi.org/10.1109/ICSSIT55814.2023.10060971.
  • 63. U.A. Ünlükuş, Economic feasiblity of floating solar pv and land-based solar pv in Northern Cyprus, (2023).
  • 64. P. Rosa-Clot, Chapter 9 - FPV and Environmental Compatibility, in: M. Rosa-Clot, G.B.T.-F.P.V.P. Marco Tina (Eds.), Academic Press, 2020: pp. 101–118. https://doi.org/https://doi.org/10.1016/ B978-0-12-817061-8.00009-9.
  • 65. J. Du, D. Zhang, Y. Zhang, K. Xu, A. Chang, S. Zhao, Design and comparative analysis of alternative mooring systems for offshore floating photovoltaics arrays in ultra-shallow water with significant tidal range, Ocean Eng. 302 (2024) 117649. https://doi.org/https://doi.org/10.1016/j. oceaneng.2024.117649.
  • 66. M.R.A. Refaai, L. Dhanesh, B.P. Ganthia, M. Mohanty, R. Subbiah, E.M. Anbese, design and implementation of a floating PV model to analyse the power generation, Int. J. Photoenergy 2022 (2022) 3891881. https://doi.org/https://doi.org/10.1155/2022/3891881.
  • 67. G. Huang, Y. Tang, X. Chen, M. Chen, Y. Jiang, A comprehensive review of floating solar plants and potentials for offshore applications, J. Mar. Sci. Eng. 11 (2023) 2064. https://doi.org/10.3390/jmse11112064.
  • 68. R. Hendarti, J. Linggarjati, J.C. Kurnia, R. Arkan Hanan H, Influence of humidity on the performance of floating photovoltaic systems over ponds in a tropical urban environment. In: IOP Conf. Ser. Earth Environ. Sci. 1375 (2024) 12015. https://doi.org/10.1088/1755-1315/1375/1/012015.
  • 69. C. Zhang, J. Dai, K.K. Ang, H.V. Lim, Development of compliant modular floating photovoltaic farm for coastal conditions, Renew. Sustain. Energy Rev. 190 (2024) 114084. https://doi.org/https://doi.org/10.1016/j.rser.2023.114084.
  • 70. S. Bossi, L. Blasi, G. Cupertino, R. Dell’Erba, A. Cipollini, S. De Vito, M. Santoro, G. Di Francia, G.M. Tina, Floating Photovoltaic Plant Monitoring: A Review of Requirements and Feasible Technologies, Sustainability 16 (2024) 8367. https://doi.org/10.3390/su16198367.
  • 71. D. Friel, M. Karimirad, T. Whittaker, W.J. Doran, E. Howlin, A review of floating photovoltaic design concepts and installed variations. In: 4th Int. Conf. Offshore Renew. Energy. CORE2019 Proceedings, Glas. ASRANet Ltd, UK, 30 Aug 2019, ASRANet Ltd, 2019.
  • 72. A.E. Cagle, A. Armstrong, G. Exley, S.M. Grodsky, J. Macknick, J. Sherwin, R.R. Hernandez, The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations, Sustainability 12 (2020) 8154. https://doi.org/10.3390/su12198154.
  • 73. R.F. Ananda, R. Budiarto, I.E. Prabowo, Preliminary design of floating photovoltaic at the logung dam. In: Int. Conf. Technol. Policy Energy Electr. Power (2022) 289–294. https://doi.org/10.1109/ ICT-PEP57242.2022.9988940.
  • 74. T.H. Kwon, J. Kim, E. Kim, S.-K. Hong, Effect on power generation of floating photovoltaic power system power by water level change, J. Korean Sol. Energy Soc. 42 (2022) 13–21. https://doi.org/10.7836/kses.2022.42.2.013.
  • 75. T. Karpouzoglou, B. Vlaswinkel, J. van der Molen, Effects of large-scale floating (solar photovoltaic) platforms on hydrodynamics and primary production in a coastal sea from a water column model, Ocean Sci. 16 (2020) 195–208. https://doi.org/10.5194/os-16-195-2020.
  • 76. J. Song, H. Imani, J. Yue, S. Yang, Hydrodynamic Characteristics of Floating Photovoltaic Systems under Ocean Loads, J. Mar. Sci. Eng. 11 (2023) 1813. https://doi.org/10.3390/jmse11091813.
  • 77. G.-H. Lee, J.-W. Choi, J.-H. Seo, H. Ha, Comparative study of effect of wind and wave load on floating PV: Computational simulation and design method, J. Korean Soc. Manuf. Process Eng. 18 (2019) 9–17. https://doi.org/10.14775/ksmpe.2019.18.11.009.
  • 78. M.R. Gomaa, M. Al-Dhaifallah, A. Alahmer, H. Rezk, Design, modeling, and experimental investigation of active water cooling concentrating photovoltaic system, Sustainability 12 (2020) 5392.
  • 79. J. Manuel Longares, A. García-Jiménez, N. García- Polanco, Multiphysics simulation of bifacial photovoltaic modules and software comparison, Sol. Energy 257 (2023) 155–163. https://doi.org/https://doi.org/10.1016/j.solener.2023.04.005.
  • 80. C. Yan, W. Shi, X. Han, X. Li, A.S. Verma, Assessing the dynamic behavior of multiconnected offshore floating photovoltaic systems under combined wave-wind loads: A comprehensive numerical analysis, Sustain. Horizons 8 (2023) 100072. https://doi.org/https://doi.org/10.1016/j.horiz.2023.100072.
  • 81. L. Huang, Energy Fluctuation of Floating Photovoltaic Solar Panel due to Wave-Induced Motions, (2024). https://doi.org/10.1115/OMAE2024-123989.
  • 82. A. Alcañiz, N. Monaco, O. Isabella, H. Ziar, Offshore floating PV–DC and AC yield analysis considering wave effects, Energy Convers. Manag. 300 (2024) 117897. https://doi.org/https://doi.org/10.1016/j. enconman.2023.117897.
  • 83. R. Nobre, S. Boulêtreau, F. Colas, F. Azemar, L. Tudesque, N. Parthuisot, P. Favriou, J. Cucherousset, Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning, Renew. Sustain. Energy Rev. 188 (2023) 113852. https://doi.org/https://doi.org/10.1016/j. rser.2023.113852.
  • 84. G. Exley, R.R. Hernandez, T. Page, M. Chipps, S. Gambro, M. Hersey, R. Lake, K.-S. Zoannou, A. Armstrong, Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability, Renew. Sustain. Energy Rev. 152 (2021) 111639. https://doi.org/https://doi.org/10.1016/j. rser.2021.111639.
  • 85. Z. Liu, C. Ma, X. Li, Z. Deng, Z. Tian, Aquatic environment impacts of floating photovoltaic and implications for climate change challenges, J. Environ. Manage. 346 (2023) 118851. https://doi.org/ https://doi.org/10.1016/j.jenvman.2023.118851.
  • 86. A.S. Makhija, S.S. Bohra, Performance and degradation analysis for different solar photovoltaic technologies under hot and humid environment: a review, Prog. Energy 5 (2023) 42002. https://doi.org/10.1088/2516-1083/acfc92.
  • 87. L. Xiong, C. Le, P. Zhang, H. Ding, J. Li, Harnessing the power of floating photovoltaic: A global review, J. Renew. Sustain. Energy 15 (2023) 052701. https://doi.org/10.1063/5.0159394.
  • 88. S. Wu, N. Jiang, S. Zhang, P. Zhang, P. Zhao, Y. Liu, Y. Wang, Discussion on the development of offshore floating photovoltaic plants, emphasizing marine environmental protection, Front. Mar. Sci. 11 (2024) 1336783. https://doi.org/10.3389/ fmars.2024.1336783.
  • 89. C. Deyá, P.S. Carrizo, Corrosion on Ancient Metals BT - Reverse Engineering of Ancient Metals, in: P.S. Carrizo (Ed.), Springer International Publishing, Cham, 2021: pp. 123–146. https://doi.org/10.1007/978-3-030-72842-7_7.
  • 90. T.W. Quadri, E.D. Akpan, L.O. Olasunkanmi, O.E. Fayemi, E.E. Ebenso, 2 - Fundamentals of corrosion chemistry. In: C.M. Hussain, C. Verma, J.B.T.-E.S.C.I. Aslam (Eds.), Elsevier, 2022: pp. 25–45. https://doi.org/https://doi.org/10.1016/ B978-0-323-85405-4.00019-7.
  • 91. C.-K. Liu, Z.-R. Kong, M.-J. Kao, T.-C. Wu, A Novel Accelerated Corrosion Test for Supporting Devices in a Floating Photovoltaic System, Appl. Sci. 11 (2021) 3308. https://doi.org/10.3390/app11083308.
  • 92. T. Kim, B.T. Nguyen, V. Minassian, C.-T. Lin, Paints and coatings monitored by laser-induced breakdown spectroscopy, J. Coatings Technol. Res. 4 (2007) 241– 253. https://doi.org/10.1007/s11998-007-9029-9.
  • 93. K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, G. Hegde, Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation, Appl. Sci. 13 (2023) 10107. https://doi.org/10.3390/app131810107.
  • 94. A.K. Hussain, N. Seetharamaiah, M. Pichumani, C.S. Chakra, Research progress in organic zinc rich primer coatings for cathodic protection of metals – A comprehensive review, Prog. Org. Coatings 153 (2021) 106040. https://doi.org/https://doi.org/10.1016/j.porgcoat.2020.106040.
  • 95. Galvanizers Association. Galvanised coating, (n.d.) 2024. https://galvanizing.org.uk/hot-dip-galvanizing/galvanised-coating/ (accessed November 25, 2024).
  • 96. EonCoat. “What Is Metal Galvanization and What Are the Dangers?” EonCoat, (2024). https://eoncoat.com/what-is-metal-galvanization-and-what-are-the-dangers/ (accessed November 25, 2024).
  • 97. P. Subudhi, D. Punetha, Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review, Prog. Photovoltaics Res. Appl. 31 (2023) 753–789. https://doi.org/https://doi.org/10.1002/pip.3703.
  • 98. H. Zhu, J. Li, Advancements in corrosion protection for aerospace aluminum alloys through surface treatment, Int. J. Electrochem. Sci. 19 (2024) 100487. https://doi.org/https://doi.org/10.1016/j.ijoes.2024.100487.
  • 99. L. Xu, Y. Xin, L. Ma, H. Zhang, Z. Lin, X. Li, Challenges and solutions of cathodic protection for marine ships, Corros. Commun. 2 (2021) 33–40. https://doi.org/https://doi.org/10.1016/j. corcom.2021.08.003.
  • 100. S. Szabo, I. Bakos, Cathodic protection with sacrificial anodes, Corros. Rev. 24 (2006) 231–280. https://doi.org/10.1515/CORRREV.2006.24.3-4.231.
  • 101. S.J. Price, R.B. Figueira, Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings 7 (2017) 25. https://doi.org/10.3390/ coatings7020025.
  • 102. Z. Fang, J. Cao, Y. Guan, Electrochemical protection and design BT – corrosion control technologies for aluminum alloy vessel. In: Z. Fang, J. Cao, Y. Guan (Eds.), Springer Singapore, Singapore, 2020: pp. 231–289. https://doi.org/10.1007/978-981-15-1932-1_6.
  • 103. D. Clematis, A. Marroccu, M. Panizza, A. Barbucci, A critical analysis on the current design criteria for cathodic protection of ships and superyachts, Materials (Basel). 15 (2022) 2645. https://doi.org/10.3390/ma15072645.
  • 104. R. Baxter, J. Britton, Deep-water, Offshore cathodic protection 101, (2007). https://stoprust. com/technical-library-items/cp-101/ (accessed November 25, 2024).
  • 105. F. Merahi, T. Brihmouche, Modeling, Sizing and Simulation of an Impressed Current Cathodic Protection System Powered by Photovoltaic Source. In: 2nd Int. Conf. Electr. Eng. Autom. Control, IEEE (2024) 1–6.
  • 106. G.S. Adly, W.R. Anis, I.M. Hafez, Design of photovoltaic powered cathodic protection system, Int. J. Sci. Technol. 6 (2017) 246–253.
  • 107. W. Oh, S.-I. Chan, Corrosion mitigation of photovoltaic ribbon using a sacrificial anode, J. Korea Acad. Coop. Soc. 18 (2017) 681–686. https://doi.org/10.5762/KAIS.2017.18.3.681.
  • 108. J.-H. Kim, J. Park, D. Kim, N. Park, Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules, Int. J. Photoenergy 2014 (2014) 809075. https://doi.org/https://doi.org/10.1155/2014/809075.
  • 109. A.O.M. Maka, T.N. Chaudhary, G. Alaswad, O. Elsayah, Applications of solar photovoltaics in powering cathodic protection systems: a review, Clean Technol. Environ. Policy 26 (2024) 2755–2776. https://doi.org/10.1007/s10098-024-02750-0.
  • 110. K.D. Khudoyorov, Automatic control of photovoltaic cathodic protection system used for various metals, Appl. Sol. Energy 58 (2022) 244–249. https://doi.org/10.3103/S0003701X22020098.
  • 111. Himoya Corrosion Technology. Galvanic/Sacrificial Anode Cathodic Protection System, (2024). https://www.himoyacorrosion.com/sacrificial-anode-cathodic-protection-system/ (accessed November 25, 2024).
  • 112. J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys – a critical review, J. Alloys Compd. 336 (2002) 88–113. https://doi.org/https://doi.org/10.1016/S0925-8388(01)01899-0.
  • 113. N. Martin, A. Mohamed, Sacrificial Anodes and Environmental Effects. In: Evol. Manuf. Des. Oper. Pract. Resour. Environ. Sustain. (2024) 81–106. https://doi.org/https://doi.org/10.1002/9781394198221.ch7.
  • 114. K.K. Maniam, S. Paul, Corrosion Performance of Electrodeposited Zinc and Zinc-Alloy Coatings in Marine Environment, Corros. Mater. Degrad. 2 (2021) 163–189. https://doi.org/10.3390/ cmd2020010.
  • 115. Y. Li, L. Wen, W. Guo, A guide to organic electroreduction using sacrificial anodes, Chem. Soc. Rev. 52 (2023) 1168–1188.
  • 116. S. Al-Dahidi, M. Madhiarasan, L. Al-Ghussain, A.M. Abubaker, A.D. Ahmad, M. Alrbai, M. Aghaei, H. Alahmer, A. Alahmer, P. Baraldi, E. Zio, Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework, Energies 17 (2024). https://doi.org/10.3390/en17164145.
  • 117. P.B. Raja, M.A. Assad, M. Ismail, Chapter 6 – Inhibitor-encapsulated smart nanocontainers for the controlled release of corrosion inhibitors, in: S. Rajendran, T.A.N.H. Nguyen, S. Kakooei, M. Yeganeh, Y.B.T.-C.P. at the N. Li (Eds.), Micro Nano Technol., Elsevier, 2020: pp. 91–105. https://doi.org/https://doi.org/10.1016/ B978-0-12-819359-4.00006-4.
  • 118. P. Wipataphan, J. Laohawattanajinda, T.N. Wichean, W. Sripianem, R. Techapiesancharoenkij, Photocathodic protection of amorphous and nanorod zinc oxide thin-film coatings on stainless steel AISI 304 fabricated by spray pyrolysis and hydrothermal technique, Mater. Chem. Phys. 291 (2022) 126714. https://doi.org/https://doi.org/10.1016/j. matchemphys.2022.126714
  • 119. N. Manoj Kumar, S. Chakraborty, S. Kumar Yadav, J. Singh, S.S. Chopra, Advancing simulation tools specific to floating solar photovoltaic systems – Comparative analysis of field-measured and simulated energy performance, Sustain. Energy Technol. Assessments 52 (2022) 102168. https://doi.org/https://doi.org/10.1016/j.seta.2022.102168.
  • 120. M.K. Kaymak, A.D. Şahin, Problems encountered with floating photovoltaic systems under real conditions: A new FPV concept and novel solutions, Sustain. Energy Technol. Assessments 47 (2021) 101504. https://doi.org/https://doi.org/10.1016/j. seta.2021.101504.
  • 121. R.B. Patil, A. Khalkar, S. Al-Dahidi, R.S. Pimpalkar, S. Bhandari, M. Pecht, A Reliability and Risk Assessment of Solar Photovoltaic Panels Using a Failure Mode and Effects Analysis Approach: A Case Study, Sustainability 16 (2024) 4183. https://doi.org/10.3390/su16104183.
  • 122. A. Sen, A.S. Mohankar, A. Khamaj, S. Karmakar, Emerging OSH Issues in Installation and Maintenance of Floating Solar Photovoltaic Projects and Their Link with Sustainable Development Goals, Risk Manag. Healthc. Policy 14 (2021) 1939– 1957. https://doi.org/10.2147/RMHP.S304732.
  • 123. B. Erten, B. Oral, M.Z. Yakut, The role of virtual and augmented reality in occupational health and safety training of employees in PV power systems and evaluation with a sustainability perspective, J. Clean. Prod. 379 (2022) 134499. https://doi.org/ https://doi.org/10.1016/j.jclepro.2022.134499.
  • 124. H. Wang, K. Wang, X. Liu, Y. Liu, Z. Qian, S. Ding, Evaluation of damage performance in offshore floating photovoltaics-based hydrogen production system due to potential hydrogen release, Front. Mar. Sci. 11 (2024) 1413678. https://doi.org/10.3389/fmars.2024.1413678.
  • 125. J.T. Dellosa, E. V Palconit, N.H. Enano, Risk Assessment and Policy Recommendations for a Floating Solar Photovoltaic (FSPV) System, IEEE Access 12 (2024) 30452–30471. https://doi.org/10.1109/ACCESS.2024.3368620.
  • 126. M. Aram, X. Zhang, D. Qi, Y. Ko, A state-of-the-art review of fire safety of photovoltaic systems in buildings, J. Clean. Prod. 308 (2021) 127239. https://doi.org/https://doi.org/10.1016/j. jclepro.2021.127239.
  • 127. V. Piana, A. Kahl, C. Saviozzi, R. Schumann, Floating PV in mountain artificial lakes: a checklist for site assessment, Renew. Energy Environ. Sustain. 6 (2021) 4.
  • 128. Y.-K. Wu, J.-H. Lin, H.-J. Lin, Standards and Guidelines for Grid-Connected Photovoltaic Generation Systems: A Review and Comparison, IEEE Trans. Ind. Appl. 53 (2017) 3205–3216. https://doi.org/10.1109/TIA.2017.2680409.
  • 129. H.L. Floyd, M. Valdes, Leveraging prevention through design principles (PtD) in electrical installations. In: IEEE IAS Electr. Saf. Work. (2020) 1–10. https://doi.org/10.1109/ ESW42757.2020.9188318.
  • 130. R. Rebelo, L. Fialho, M.H. Novais, Floating photovoltaic systems: photovoltaic cable submersion testing and potential impacts, Open Res. Eur. 3 (2024) 61. https://doi.org/10.12688/ openreseurope.15122.2.
  • 131. Y. Chu, P. Meisen, Review and comparison of different solar energy technologies, Glob. Energy Netw. Inst. (GENI), San Diego, CA 1 (2011) 1–52.
  • 132. P.M. Mircea, Electrical Safety in LV Energy Installations BT - Energy Transition Holistic Impact Challenge (ETHIC): A New Environmental and Climatic Era, in: G.C. Lazaroiu, M. Roscia, V.S. Dancu (Eds.), Springer Nature Switzerland, Cham, 2024: pp. 401–440. https://doi.org/10.1007/978-3-031-55448-3_16.
  • 133. S. Zhao, Y.M. Low, C.D. Rodríguez-Gallegos, T. Reindl, Potential root causes for failures in floating PV systems. In: Int. Conf. Offshore Mech. Arct. Eng., American Society of Mechanical Engineers (2023) V008T09A012.
  • 134. L. Hewitson, M. Brown, R. Balakrishnan, Practical power system protection, Elsevier, 2004.
  • 135. N.-H. Nguyen, B.-C. Le, L.-N. Nguyen, T.-T. Bui, Technical analysis of the large capacity grid-connected floating photovoltaic system on the hydropower reservoir, Energies 16 (2023) 3780. https://doi.org/10.3390/en16093780.
  • 136. Y. Bei, B. Yuan, Z. Wang, J. Tang, Floating photovoltaic for the coal mining subsidence water area – an effective way to reduce evaporation. In: 5th Int. Conf. Energy, Electr. Power Eng. (2022) 1126–1130. https://doi.org/10.1109/ CEEPE55110.2022.9783259.
  • 137. D. Misra, Floating photovoltaic plant in india: current status and future prospect BT – advances in thermal engineering, manufacturing, and production management. In: S.K. Ghosh, K. Ghosh, S. Das, P.K. Dan, A. Kundu (Eds.), Springer Singapore, Singapore, 2021: pp. 219–232.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-767ea8a3-661a-46ee-9c73-49451ceed12f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.