PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving machining performance against regenerative tool chatter through adaptive normal pressure at the tool clamping interface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chatter in machining process is one of the common failures of a production line. For a cantilever tool, such as a boring bar, the rule of thumb requires the overhang length of the tool to be less than 4 times the diameter. The reason is because longer overhang will induce severe tool vibration in the form of chatter during machining. When a longer overhang than 4 times diameter is necessary for performing special machining operations, damping methods are needed to suppress tool chatter. One of the methods is the constrained layer damping method. Materials, such viscoelastic material, are applied in the vibration node regions of the structure to absorb the concentrated vibration strain energy and transform the mechanical energy to heat. With a cantilever tool clamped in a tool holder, the clamping interface is usually the vibration node region. The friction in the joint interface with low normal pressure became another source of damping and can be used for tool chatter suppression in mechanical structures. Joint interfaces are well known to possess normal pressure dependent stiffness and damping. The normal pressure's effect on the structures frequency response function had been observed by H. Akesson [1] et al, and L.Mi [2] et al. However, the direct effect of the joint interface normal pressure on machining process stability hasn't been investigated. In this paper, a cantilever tool with 6,5 overhang length to diameter ratio is investigated. The direct effect of the tool clamping interface's normal pressure on the machining process stability is studied. Three different levels of clamping normal pressure are tested with an internal turning process. The machining results indicate another adaptable solution on shop floor for suppressing tool chatter.
Słowa kluczowe
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
autor
  • Department of Production Engineering School of Industrial Technique Management, Royal Institute of Technology, SE-10044, Stockholm, Sweden
autor
  • Department of Production Engineering School of Industrial Technique Management, Royal Institute of Technology, SE-10044, Stockholm, Sweden
  • Department of Production Engineering School of Industrial Technique Management, Royal Institute of Technology, SE-10044, Stockholm, Sweden
Bibliografia
  • [1] AKERSSON H., 2007, Active control of vibration and analysis of dynamic properties concerning machine tools, 9172951125.
  • [2] MI L, YIN G.-F., SUN M-N., WANG X-H, 2012, Effects of preloads on joints on dynamic stiffness of a wholemachine tool structure, Journal of Mechanical Science and Technology, 26, 495-508, 1738-494X, doi:10.1007/s12206-011-1033-4.
  • [3] RUUD N. A., KARLSEN R., SORBY K, RICHT C., 2004, Minimizing vibration tendencies in machining, Modern Machine Shop, 3/19.
  • [4] QUINTANA G., JOAQUIM C., 2011, Chatter in machining processes: a review, International Journal of Machine Tools & Manufacture, 51, 14, doi:10.1016/j.ijmachtools.2011.01.001.
  • [5] NIGM M. M., 1981, A method for the analysis of machine tool chatter, International Journal of Machine Tool Design and Research, 21, 251-261, doi:10.1016/0020-7357(81)90022-6.
  • [6] GURNEY J.P., TOBIAS S.A., 1961, A graphical method for the determination of the dynamic stability of machine tools, International Jounal of Tool Design Research, 1, 148-156.
  • [7] TOBIAS S. A., FISHWICK W., 1958, Theory of regenerative machine tool chatter, The engineer.
  • [8] SORTINO M., TOTIS G., PROSPERI F., 2012, Development of a practical model for selection of stable tooling system configurations in internal turning, International Journal of Machine Tool and Manufacture, 61, 58-70, doi:10.1016/j.ijmachtools.2012.05.010.
  • [9] TLUSTY J., POLACEK M., 1963, The stability of the machine tool against self excited vibration in machining, Engineering Research Conference, 465-474.
  • [10] Mistubish, Technical Data.
  • [11] SATYANARAYANA K., VENUGOPAL A., VENKATESWARARAO G., 2011, Effect of Rake Angle and Feed Rate on Cutting Forces in an Orthogonal Turning Process, Trends in Mechanical and Industrial Engineering (ICTMIE'2011).
  • [12] ANDRÉN L., HAKANSSON L., BRANDT A. and CLAESSON I., 2004, Identification of motion of cutting tool vibration in a continuous boring operation—correlation to structural properties, Mechanical Systems and Signal Processing, 18, 903-927, doi:10.1016/j.ymssp.2003.09.009.
  • [13] SMITH S., TLUSTY J., 1992, Stabilizing chatter by automatic spindle speed regulation, CIRP AnnalsManufacturing Technology, 41, 433-436, 0007-8506.
  • [14] ALTINTAS Y., EYNIAN M., ONOZUKA H., 2008, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Annals-Manufacturing Technology, 57, 371-374, 0007-8506.
  • [15] AB Sandving Coromant, 2005, How to reduce vibration in metal cutting.
  • [16] MEI Z., YANG S., SHI H., CHANG S., EHMANN K., 1994, Active chatter suppression by on-line variation of the rake and clearance angles in turning—principles and experimental investigations, International Journal of Machine Tools and Manufacture, 34, 981-990, 0890-6955.
  • [17] DAGHINI L., ARCHENTI A., NICOLESCU C. M., 2009, Design, implementation and Analysis of composite material dampers for turning operations, World Academy of Science, Engineering and Technology, 53, 613-620,
  • [18] HARMS A., DENKENA B., LHERMET N., 2004, Tool adaptor for active vibration control in turning operations, 9th International Conference on New Actuators, Actoator 2004, 14 – 16 June, Bremen, Germany.
  • [19] RASHID A., NICOLESCU C. M., 2007, Design and implementation of tuned viscoelastic dampers for vibration control in milling, International Journal of Machine Tools and Manufacture, 48, 1036-1053, doi:10.1016/j.ijmachtools.2007.12.013.
  • [20] BERANEK L.L., VÉR I.L., 1992, Noise and vibration control engineering: principles and applications, 804, 0471617512.
  • [21] KARTAL M.E., MULVIHIL D.M., NOVEL D., HILLS D.A., 2011, Measurement of tangential contact stiffness in frictional contacts: the effect of normal pressure, Applied Mechanics and Materials, 70, 321-326, doi:10.4028/www.scientific.net/AMM.70.321.
  • [22] ITO Y., 2008, Modular Design for Machine Tools, Part2, ISBN-10: 0071496602, doi:10.1036/0071496602.
  • [23] PADMANABHAN K. K., MURTY A. S. R., 1991, Damping in Structural Joints Subjected to Tangential Loads, Mechanical Engineering Science, 205, 121-1219, doi:10.1243/PIME_PROC_1991_205_099_02.
  • [24] ZHANG X.L., WEN S.H., LAN G.S., DING H.Q., ZHANG Z.Y., 2010, Experiment Research on Tangential Dynamic Characteristics of Machined Plane Joint Interfaces, Advanced Material Research, 145, 584-589, doi:10.4028/www.scientific.net/AMR.145.584.
  • [25] RAHMAN M., 1985, Effect of Clamping Conditions on Chatter Stability and Machining Accuracy, Annals of the ClRP, 34, 339-342.
  • [26] Hydro-fix, url:http://www.etp.se/sites/default/files/ETP%20folder%20HYDRO-FIX%20ENG.pdf
  • [27] ALTINTAS Y., BUDAK E., 1995, Analytical prediction of stability lobes in milling, CIRP Annals -Manufacturing Technology, 44, 357-362, doi:10.1016/S0007-8506(07)62342-7, url:http://ac.els-cdn.com/S0007850607623427/1-s2.0S0007850607623427main.pdf? _tid=9730a334593814d73f2b f6028e06b9f3&acdnat=1340531924_7e4ff12ce4c0dd9965be115c603f7f00.
  • [28] YANG B.D., CHU M.L., MENQ C. H., 1998, Stick–slip–separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load, Journal of Sound and Vibration, 210, 461-481, doi:10.1006/jsvi.1997.1305.
  • [29] ANDREN L., HÅKANSSON L., BRANDT A., CLAESSON I., 2004, Identification of motion of cutting tool vibration in a continuous boring operation-correlation to structural properties, Mechanical Systems and Signal Processing, 18, 903-927, doi:10.1016/j.ymssp.2003.09.009, url:http://ac.els-cdn.com/S0888327003001250/1-s2.0-S0888327003001250main.pdf?_tid=7578e7543a3f2dba119979c44714f5f7&acdnat=1340464854_21a0986560d35d554b22f6dbc6138554.
  • [30] TSAI S.Y., EMAN K.F., Wu S.M., 1983, Chatter suppression in turning, NAMR C XI, 399-402.
  • [31] LI H.Z., LI X.P., CHEN X. Q., 2002, A new chatter stability criterion in milling process simulation, Control, Automation, Robotics and Vision, ICARCV 2002, 7th International Conference, 3, 1371-1376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76752318-8b61-4677-93bf-53c9eb4ebb1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.