PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis and numerical implementation of the third-order fractional partial differential equation based on the Caputo fractional derivative

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines a third-order fractional partial differential equation (FPDE) in the Caputo sense. The Theta difference method (TDM) is utilized to investigate the problem, and a first-order difference scheme is developed. Stability estimates are obtained by applying the Von Neumann analysis method. A test problem is presented as an application, and numerical results are obtained using Matlab software. Error estimates, as well as exact and approximate solutions are presented in a data analysis table. The simulation results are shown through error analysis tables and figures.
Rocznik
Strony
33--42
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Mathematics, College of Basic Education, University of Duhok Duhok, Iraq
  • Department of Mathematics, Faculty of Arts and Sciences, Harran University Sanliurfa, Turkey
  • Department of Mathematics, College of Basic Education, University of Duhok Duhok, Iraq
  • Department of Computer Science, College of Science, Nawroz University Duhok, Iraq
Bibliografia
  • [1] Lazarević, M.P., Rapaić, M.R., Šekara, T.B., Mladenov, V., & Mastorakis, N. (2014). Introduction to fractional calculus with brief historical background. Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling, 3-16.
  • [2] Baleanu, D., Sajjadi, S.S., Jajarmi, A.M.I.N., Defterli, O.Z.L.E.M., Asad, J.H., & Tulkarm, P. (2021). The fractional dynamics of a linear triatomic molecule. Romanian Reports in Physics, 73(1), 105.
  • [3] Nisar, K.S., Ciancio, A., Ali, K.K., Osman, M.S., Cattani, C., Baleanu, D., ... & Azeem, M. (2022). On beta-time fractional biological population model with abundant solitary wave structures. Alexandria Engineering Journal, 61(3), 1996-2008.
  • [4] Ullah, S., Khan, M.A., & Farooq, M. (2018). A fractional model for the dynamics of TB virus. Chaos, Solitons & Fractals, 116, 63-71
  • [5] Butt, A.I.K., Ahmad, W., Rafiq, M., & Baleanu, D. (2022). Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic. Alexandria Engineering Journal, 61(9), 7007-7027.
  • [6] Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations (Vol. 204). Elsevier.
  • [7] Jajarmi, A., Baleanu, D., Zarghami Vahid, K., & Mobayen, S. (2022). A general fractional formulation and tracking control for immunogenic tumor dynamics. Mathematical Methods in the Applied Sciences, 45(2), 667-680.
  • [8] Abdulazeez, S.T., & Modanli, M. (2022). Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method. Alexandria Engineering Journal, 61(12), 12443-12451.
  • [9] Beghami, W., Maayah, B., Bushnaq, S., & Abu Arqub, O. (2022). The Laplace optimized decomposition method for solving systems of partial differential equations of fractional order. International Journal of Applied and Computational Mathematics, 8(2), 52.
  • [10] Liaqat, M.I., Khan, A., & Akgül, A. (2022). Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations. Chaos, Solitons & Fractals, 157, 111984.
  • [11] Modanli, M., Karadag, K., & Abdulazeez, S.T. (2023). Solutions of the mobile-immobile advection-dispersion model based on the fractional operators using the Crank-Nicholson difference scheme. Chaos, Solitons & Fractals, 167, 113114.
  • [12] Arqub, O.A. (2018). Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. International Journal of Numerical Methods for Heat & Fluid Flow, 28(4), 828-856.
  • [13] Abu Arqub, O. (2020). Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. International Journal of Numerical Methods for Heat & Fluid Flow, 30(11), 4711-4733.
  • [14] Sweis, H., Arqub, O.A., & Shawagfeh, N. (2022). Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. International Journal of Modern Physics C, (б/н), 2350052-2350052.
  • [15] Alshehry, A.S., Shah, R., Shah, N.A., & Dassios, I. (2022). A reliable technique for solving fractional partial differential equation. Axioms, 11(10), 574.
  • [16] Podlubny, I. (1999). Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press.
  • [17] Mansouri, I., Bekkouche, M.M., & Ahmed, A.A. (2023). Numerical solution of a fractional coupled system with the Caputo-Fabrizio fractional derivative. Journal of Applied Mathematics and Computational Mechanics, 22(1), 42-52.
  • [18] Yadav, S., Pandey, R.K., & Shukla, A.K. (2019). Numerical approximations of Atangana-Baleanu Caputo derivative and its application. Chaos, Solitons & Fractals, 118, 58-64.
  • [19] Aslefallah, M., Rostamy, D., & Hosseinkhani, K. (2014). Solving time-fractional differential diffusion equation by theta-method. International Journal of Advances in Applied Mathematics and Mechanics, 2(1), 1-8.
  • [20] Modanli, M., & Akgül, A. (2017). Numerical solution of fractional telegraph differential equations by theta-method. The European Physical Journal Special Topics, 226, 3693-3703.
  • [21] Abdulla, S.O., Abdulazeez, S.T., & Modanli, M. (2023). Comparison of third-order fractional partial differential equation based on the fractional operators using the explicit finite difference method. Alexandria Engineering Journal, 70, 37-44.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76725a87-0e22-40bf-ab86-1dfa71c5f819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.