Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fundamental objective of this article is to investigate about the boundary value problem with the uses of a generalized conformable fractional derivative introduced by Zarikaya et al. (On generalized the conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792–799, http://jaem.isikun.edu.tr/web/images/articles/vol.9.no.4/11.pdf). In the development of the this article, by using classical methods of fractional calculus, we find a definition of the generalized fractional Wronskian according to the fractional differential operator defined by Zarikaya, a fractional version of the Sturm-Picone theorem, and in addition, the stability criterion given by the Hyers-Ulam theorem is studied with the use of the aforementioned fractional derivatives.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220212
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Físicas y Matemáticas, Av. 12 de Octubre 1076, Apartado: 17-01-2184, Quito 170143, Ecuador
autor
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
autor
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
autor
- Departamento de Técnicas Cuantitativas, Universidad Centroccidental Lisandro Alvarado, Decanato de Ciencias Económicas y Empresariales, Edf. Los Militares, Ofc. 2, ZP: 3001, Barquisimeto, Venezuela
Bibliografia
- [1] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, USA, 2006.
- [2] K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, USA, 1993.
- [3] L. Lugo Motta, J. E. Nápoles Valdés, and M. Vivas-Cortez, On the oscillatory behavior of some forced nonlinear generalized differential equation, Investigación Operacional 42 (2021), no. 2, 267–278, https://rev-inv-ope.pantheonsorbonne.fr/sites/default/files/inline-files/42221-10.pdf.
- [4] R. Khalil, M. AlHorani, A. Yousef, and M. A. Sababheh, New definition of fractional derivative, J. Comp. Appl. Math. 264 (2014), 65–70, DOI: https://doi.org/10.1016/j.cam.2014.01.002.
- [5] T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57–66, DOI: https://doi.org/10.1016/j.cam.2014.10.016.
- [6] J. E. Nápoles Valdés, P. M. Guzman, and L. Lugo Motta, Some new results on nonconformable fractional calculus, Adv. Dyn. Sys. Appl. 13 (2018), no. 2, 167–175, https://www.ripublication.com/adsa18/v13n2p5.pdf.
- [7] R. Abreu-Blaya, A. Fleitas, J. E. NápolesValdés, R. Reyes, J. M. Rodríguez, and J. M. Sigarreta, On the conformable fractional logistic models, Math. Meth. Appl. Sci. 43 (2020), 4156–4167, DOI: https://doi.org/10.1002/mma.6180.
- [8] A. Fleitas, J. E. Nápoles Valdés, J. M. Rodriguez, and J. M. Sigarreta, Note on the generalized conformable derivative, Revista de la Unión Matemática Argentina, 62 (2021), no. 2, 443–457.
- [9] A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open Math. 13 (2015), 889–898, DOI: https://doi.org/10.1515/math-2015-0081.
- [10] E. Capelas de Oliveira and J. A. Tenreiro Machado, Areview of definitions for fractional derivatives and integral, Math. Problems Eng. 2014 (2014), Article 238459, 1–6, DOI: https://doi.org/10.1155/2014/238459.
- [11] L. L. Helms, Introduction To Potential Theory, Wiley-Interscience, USA, New York, 1969.
- [12] A. Fleitas, J. A. Méndez-Bermúdez, J. E. NápolesValdés, and J. M. Sigarreta Almira, On fractional Liénard-type systems, Rev. Mex. Física 65 (2019), no. 6, 618–625, DOI: https://doi.org/10.31349/RevMexFis.65.618.
- [13] P. M. Guzman, L. LugoMotta, J. E. NápolesValdés, and M. Vivas-Cortez, On a new generalized integral operator and certain operating properties, Axioms 9 (2020), no. 2, 1–14, DOI: https://doi.org/10.3390/axioms9020069.
- [14] M. AlHorani and R. Khalil, Total fractional differential with applications to exact fractional differential equations, Int. J. Comp. Math. 95 (2018), 1444–1452, DOI: https://doi.org/10.1080/00207160.2018.1438602.
- [15] O. S. Iyiola and N. R. Nwaeze, Some new results on the new conformable fractional calculus with application using DaAlambert approach, Progr. Fract. Differ. Appl. 2 (2016), 1–7, DOI: https://doi.org/10.18576/pfda/020204.
- [16] F. Martínez, I. Martínez, and S. Paredes, Conformable Euleras theorem on homogeneous functions, Comp. Math. Methods 1 (2018), no. 5, 1–11, DOI: https://doi.org/10.1002/cmm4.1048.
- [17] F. Martínez, P. O. Mohammed, and J. E. Nápoles Valdés, Non conformable fractional Laplace transform, Kragujevac J Math. 46 (2022), no. 3, 341–354.
- [18] C. Martinez, M. Sanz, and F. Periogo, Distributional fractional powers of Laplacian Riesz potential, Stud. Math. 135 (1999), no. 3, 253–271, http://matwbn.icm.edu.pl/ksiazki/sm/sm135/sm13534.pdf.
- [19] M. Al Masalmeh, Series method to solve conformable fractional Riccati differential equations, Int. J. Appl. Math. Res. 6 (2017), 30–33, DOI: https://doi.org/10.14419/ijamr.v6i1.7238.
- [20] J. E. Nápoles Valdéz, L. Lugo Motta, and P. Guzmán, A note on stability of certain L’ienard fractional equation, Int. J. Math. Comp. Sci. 14 (2019), no. 2, 301–315, http://ijmcs.future-in-tech.net/14.2/R-Valdez.pdf.
- [21] L. M. Lugo, J. E. Nápoles Valdés, and M. Vivas-Cortez, On the oscillatory behavior of some forced nonlinear generalized differential equation, Investigación Operacional (La Habana, Cuba) 42 (2021), no. 2, 267–278, https://rev-inv-ope.pantheonsorbonne.fr/sites/default/files/inline-files/42221-10.pdf.
- [22] E. Ünal, A. Gökdogan, and E. Çelik, Solutions of sequential conformable fractional differential equations around an ordinary point and conformable fractional Hermite differential equation, Brit. Differential Equations 10 (2015), 1–11, DOI: https://doi.org/10.9734/BJAST/2015/18590.
- [23] N. Yazici and U. Gözütok, Multivariable conformable fractional calculus, Filomat 32 (2018), no. 1, 45–53, DOI: https://doi.org/10.2298/FIL1801045G.
- [24] M. A. Hammad and R. Khalil, Abel’s formula and wronskian for conformable fractional differential equations, Int. J. Differ. Equat. Appl. 14 (2014), 177–183, DOI: http://dx.doi.org/10.12732/ijdea.v13i3.1753.
- [25] J. E. NápolesValdés, J. M. Rodríguez, and J. M. Sigarreta, New Hermite-Hadamard type inequalities involving non-con-formable integral operators, Symmetry 22 (2019), 1–11, DOI: https://doi.org/10.3390/sym11091108.
- [26] P. Bosch, J. F. Gómez-Aguilar, J. M. Rodriguez, and J. M. Sigarreta, Analysis of Dengue fever outbreak by generalized fractional deivative, Fractals 28 (2020), no. 8, 1–12, DOI: https://doi.org/10.1142/S0218348X20400381.
- [27] M. Vivas-Cortez, J. E. Nápoles Valdés, J. E., Hernández Hernández, J. Velasco, and O. Larreal, On Non Conformable Fractional Laplace Transform, Appl. Math. Inf. Sci. 15 (2021), no.4, 403–409, DOI: https://doi.org/doi:10.18576/amis/150401.
- [28] M. Vivas-Cortez, A. Fleitas, P. M. Guzmán, J. E. Nápoles, and J. J. Rosales, Newtonas law of cooling with generalized conformable derivatives, Symmetry 13 (2021), no. 6, 1–13, DOI: https://doi.org/10.3390/sym13061093.
- [29] G. Choi and S. M. Jung, Invariance of Hyers-Ulam stability of linear differential, Adv. Differ. Equ. 2015 (2015), Article 277, 1–14, DOI: https://doi.org/10.1186/s13662-015-0617-1.
- [30] W. R. Derrick and S. I. Grossman, Elementary Differential Equations with Applications, 2nd Edition, Addison-Wesley Publishing Company, nc., New York, 1981.
- [31] C. T. Fulton, L. Wu, and S. Pruess, A Sturm separation theorem for linear 2nth order self-adjoint differential equation, J. Appl. Math. Sthoc. Anal. 8 (1995), 29–46, DOI: https://doi.org/10.1155/S1048953395000037.
- [32] M. A. Al-Horani, M. A. Hammad, and R. Khalil, Variations of parameters for local fractional nonhomogeneous linear-differential equations, J. Math. Comput. Sci. 16 (2016), no. 2, 147–153, DOI: http://dx.doi.org/10.22436/jmcs.016.02.03.
- [33] R. Khalil, M. A. Al-Horani, and D. Anderson, Undetermined coefficients for local differential equations, J. Math. Comput. Sci. 16 (2016), no. 2, 140–146, DOI: http://dx.doi.org/10.22436/jmcs.016.02.02.
- [34] M. Pospíšil and L. P. Škripcová, Sturmas theorems for conformable fractional differential equations, Math. Commun. 21 (2016), 273–281, https://www.mathos.unios.hr/mc/index.php/mc/article/view/1598/398.
- [35] M. Z. Zarikaya, H. Budak, and F. Usta, On generalized the conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792–799, http://jaem.isikun.edu.tr/web/images/articles/vol.9.no.4/11.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76722d28-8761-4e2f-9206-d094f4720264
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.