Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
External photon beam radiotherapy is often used in tumor treatment. The photons are generated from the target which had stricken by the primary electron beam (incident particles). The photon beam contains the primary photons coming directly from the target and secondary photons coming from the photon interactions with head component materials (scattered photons). Altogether is thereafter used in radiotherapy treatment. This Monte Carlo study aims to investigate and evaluate the secondary radiations (photons) in terms of fluence, energy fluence, spectral distribution, mean energy and angular spread distribution. The secondary photons, which contributed in radiotherapy treatment, are examined and evaluated in number (fluence) and energy. At the phantom surface, the secondary photons originated in the whole linac head are mainly coming from the primary collimator. In 0.45% of secondary photons coming from the whole linac head, the primary collimator contributes by 86% and they are more energetic. However, the flattening filter and the secondary collimator contribute together by less than 14% and their photons are less energetic and then can deteriorate the beam dosimetry quality. To improve the radiotherapy treatment quality, the number of photons of low energy should be as low as possible in the clinical beam. Our work can be a basic investigation to use in the improvement of linac head configuration and specially the beam modifiers.
Słowa kluczowe
Rocznik
Tom
Strony
151--156
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Physics Department, Faculty of Sciences and Technologies Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
autor
- LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
autor
- LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
autor
- Theoretical and Particle Physics and Modelling Laboratory, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco
autor
- LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
Bibliografia
- 1. Hill R, Healey B, Holloway L, et al. Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol. 2014;59(6):R183-231. https://doi.org/10.1088/0031-9155/59/6/R183
- 2. Seuntjens JP, Ross CK, Shortt KR, Rogers DW O. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams. Med Phys. 2000:27(12): 2763-2779. https://doi.org/10.1118/1.1328081
- 3. Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group no 105: Issues associated with clinical implementation of Monte Carlo based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818-4853. https://doi.org/10.1118/1.2795842
- 4. Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107-164. https://doi.org/10.1088/0031-9155/48/21/r01
- 5. Bencheikh M, Maghnouj A, Tajmouati J. Energetic Properties’ Investigation of Removing Flattening Filter at Phantom Surface: Monte Carlo Study using BEAMnrc Code, DOSXYZnrc Code and BEAMDP Code. PEPAN Letters. 2017;14(6):921-930. https://doi.org/10.1134/S1547477117060073
- 6. Bencheikh M, Maghnouj A, Tajmouati J. Photon beam softening coefficient determination with slab thickness in small filed size: Monte Carlo study. PEPAN Letters, 2017:14(6):685-686
- 7. Didi A, Dadouch A., Bencheikh M, Jai O. Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis. Moscow University Physics Bulletin. 2017;72(5):460-464. https://doi.org/10.3103/S0027134917050022
- 8. Sheikh-Bagheri D, Rogers DWO. Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys. 2002;29(3):379-390. https://doi.org/10.1118/1.1446109
- 9. Vega-Carrillo HR, Martınez-Ovalle SA, Lallena AM, et al. Neutron and photon spectra in LINACs. Applied Radiation and Isotopes. 2012;71(Supplement):75-80. https://doi.org/10.1016/j.apradiso.2012.03.034
- 10. Medina AL, Teijeiro A, Salvador F, et al. Comparison between TG-51 and TRS-398: electron contamination effect on photon beamquality specification. Phys Med Biol. 2004;49(1):17-32. https://doi.org/10.1088/0031-9155/49/1/002
- 11. Bencheikh M, Maghnouj A, Tajmouati J. Photon beam softening coefficients evaluation for a 6 MeV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Moscow University Physics Bulletin. 2017;72(3):263-270. https://doi.org/10.3103/S0027134917030043
- 12. Bencheikh M, Maghnouj A, Tajmouati J. Dosimetry Investigation and Evaluation for Removing Flattening Filter Configuration of linac: Monte Carlo Study. Moscow University Physics Bulletin. 2017;72(6):640-646. https://doi.org/10.3103/S0027134918660025
- 13. Bencheikh M, Maghnouj A, Tajmouati J. Study of photon beam dosimetry quality for removing flattening filter linac configuration. Annals of University of Craiova Physics AUC. 2017;27:50-60.
- 14. Reynaert N, van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem. 2017;76(4):643-686. https://doi.org/10.1016/j.radphyschem.2006.05.015
- 15. Pearson D, Parsai E, Fledmeier J. SU‐FF‐T‐223: Evaluation of dosimetric properties of 6 and 10 MeV photon beams from a linear accelerator with no flattening filter. Med Phys;33:2099. https://doi.org/10.1118/1.2241143
- 16. Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. NRCC Report; Ottawa. 2013;12-254.
- 17. Rogers DWO, Kawrakow I, Seuntjens JP, et al. NRC User Codes for EGSnrc. NRCC Report; Ottawa. 2013;6-83.
- 18. Ma CM, Rogers DWO. BEAMDP Users Manual. NRCC Report; Ottawa. 2013;3-24.
- 19. IAEA Technical Reports Series No.430. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. International Atomic Energy Agency; Vienna. 2004.
- 20. IAEA-TECDOC-1540. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. International Atomic Energy Agency; Vienna. 2007.
- 21. Bencheikh M, Maghnouj A, Tajmouati J. Validation of Monte Carlo simulation of 6 MV photon beam produced by Varian Clinac 2100 linear accelerator using BEAMnrc code and DOSXYZnrc code. PEPAN Letters. 2017;14(5):780-787. https://doi.org/10.1134/S154747711705003X
- 22. Swiss Society of Radiobiology and Medical Physics SSRMP. Dosimétrie des faisceaux de photons de haute énergie l’aide de chambres d’ionisation. SSRMP Recommandation N° 8. 2000. ISBN 3-908125-26-X.
- 23. García-Garduño OA, Celis MA, Lárraga-Gutiérrez JM, et al. Radiation transmission, leakage and beam penumbra measurements of a micro-multileaf collimator using GafChromic EBT film. Journal of Applied Clinical Medical Physics. 2008;9(3):90-98. https://doi.org/10.1120/jacmp.v9i3.2802
- 24. International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy. Technical reports series no. 398. International Atomic Energy Agency; Vienna. 2000;110-133.
- 25. Chaney EL, Cullip TJ, Gabriel TA. A Monte Carlo study of accelerator head scatter. Med Phys. 1994;21(9):1383-1390. https://doi.org/10.1118/1.597194
- 26. Zhu TC, Bjärngard BE. Head scatter off-axis for megavoltage x rays. Med Phys. 2003;30(4):533-543. https://doi.org/10.1118/1.1556609
- 27. Bencheikh M, Maghnouj A, Tajmouati J. Study of Possibility to Reduce Flattening Filter Volume for Increasing Energetic Photons for High Radiotherapy Efficiency. Moscow University Physics Bulletin. 2017;72(6):653-657. https://doi.org/10.3103/S0027134918660049
- 28. Bencheikh M, Maghnouj A, Tajmouati J. Relative Attenuation and Beam Softening Study with Flattening Filter Volume Reduction: Monte Carlo Study. Moscow University Physics Bulletin. 2017;72(6):647-652. https://doi.org/10.3103/S0027134918660037
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76706ee3-9f6e-47d2-970a-764449a59fb2