PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystallisation kinetics of the Zn-Al alloys modified with lanthanum and cerium

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the investigation is to determine the influence of modification on crystallisation kinetics on microstructure of the cast zinc alloy. This research work presents also the investigation results of derivative thermoanalysis performed using the UMSA device. The material used for investigation was the ZnAl8Cu1 alloy. Design/methodology/approach: The UMSA device (Universal Metallurgical Simulator and Analyser) allows it to determine the characteristic points of the crystallised alloy including: determination of the influence of alloy modifiers, alloying additives, melting process parameters, cooling rate influence on phase and eutectics crystallisation of the investigated alloys. In was fund that cooling rate has an influence an microstructure and mechanical properties of the cast zinc alloys. Findings: Crystallisation kinetics change makes it possible to produce materials with improved properties, which are obtained by: microstructure refinement and decrease or elimination of the segregation phenomenon. Research limitations/implications: The material was examined metallographic and analysed qualitatively using light and scanning electron microscope as well as the area mapping and point-wise EDS microanalysis. The performed investigation are discussed for the reason of an possible improvement of thermal and structural properties of the alloy. Practical implications: The investigated material can find its use in the foundry industry; an improvement of component quality depends mainly on better control over the production parameters. Originality/value: value Investigation concerning the elaboration of optimal chemical composition and production method of zinc-aluminium alloys modified with chosen rare earths metals with enhanced properties compared to elements performed from traditional alloys and production methods, makes it possible to achieve a better understanding of mechanisms influencing improvement of mechanical properties of the new developed alloys.
Rocznik
Strony
154--160
Opis fizyczny
Bibliogr. 39 poz. rys., tab.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Fraś, Alloy crystallisation, WNT, Warsaw, 2003.
  • [2] Z. Górny, J. Sobczak, Non-ferrous metals based materials in foundry practice, ZA-PIS, Cracow, 2005
  • [3] W. Krajewski, Research of phase transformation in highaluminium zinc foundry alloys modified by Ti addition, Practical Metallography, 30 (1999) 327-331.
  • [4] B. Krupińska, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Crystallization kinetics of Zn alloys modified with Ce, La, Sr, Ti, B, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 50-57.
  • [5] B. Krupińska, L.A. Dobrzański, Z.M. Rdzawski, K. Labisz, Cooling rate influence on microstructure of the Zn-Al cast alloy, Archives of Materials Science and Engineering 43/1 (2010) 13-20.
  • [6] M. Krupiński, K. Labisz, L.A. Dobrzański, Structure investigation of the Al-Si-Cu alloy using derivative thermo analysis, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 47-54.
  • [7] M. Krupiński, K. Labisz, L.A. Dobrzański, Z.M. Rdzawski, Derivative thermo-analysis application to assess the cooling rate influence on the microstructure of Al-Si alloy cast, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 115-122.
  • [8] J.C. Baez, C. Gonzalez, M.R. Chavez, M. Castro, J. Juarez, Fourier thermal analysis of the solidification kinetics in A356/SiCp cast composites, Journal of Materials Processing Technology 153-154 (2004) 531-536.
  • [9] L.J. Yang, The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys, Journal of Materials Processing Technology 140 (2003) 391-396
  • [10] L.J. Yang, The effect of solidification time in squeeze casting of aluminium and zinc alloys, Journal of Materials Processing Technology 192-193 (2007) 114-120.
  • [11] Yao Hua Zhu, Phase transformations of eutectoid Zn-Al alloys, Journal of materials Science 36 (2001) 3973-3980.
  • [12] W.R. Osorio, A. Garcia, Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions, Materials Science and Engineering A 325 (2002) 103-111.
  • [13] W.R. Osorio, C.M. Freire, A. Garcia, The effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys, Journal of Alloys and Compounds 397 (2005) 179-191.
  • [14] W.R. Osorio, C.A. Santos, J.M.V. Quaressma, A. Garcia, Mechanical properties as a function of thermal parameters and microstructure of Zn-Al castings, Journal of Materials Processing Technology 143-144 (2003) 703-709.
  • [15] P. Choudhury, S. Das, Effect of microstructure on the corrosion behavior of a zinc-aluminium alloy, Journal of Materials Science 40 (2005) 805-807.
  • [16] A.E. Ares, L.M. Gassa, S.F. Gueijman, C.E. Schvezov, Correlation between thermal parameters, structures, dendritic spacing and corrosion behavior of Zn-Al alloys with columnar to equiaxed transition, Journal of Crystal Growth 310 (2008) 1355-1361.
  • [17] M. Durman, S. Murphy, An electronmetallographic study of pressure die-cast commercial zinc-aluminium-based alloy ZA27, Journal of Materials Science 32 (1997) 1603-1611.
  • [18] T.J. Chena, Y. Haoa, J. Sunb, Y.D. Lia, Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27, Science and Technology of Advanced Materials 4 (2003) 495-502.
  • [19] M. Cholewa, The specific case of the kinetics of the thermal model of particle solidifying composite ceramic-metal matrix, Proceedings of the 12th Scientific International Conference "Achievements in Mechanical and Materials Engineering", AMME'2003, Gliwice-Zakopane (2003) 147156 (in Polish).
  • [20] J. Szajnar, The impact of selected physical factors on the crystallization process and structure of castings, Archives of Foundry Engineering 9/1M, 2009.
  • [21] W. Kasprzak, J.H. Sokołowski, M. Sahoo, L.A. Dobrzański, Thermal and structural characteristics of the AM50 magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 131-138.
  • [22] L.A. Dobrzański, M. Kasprzak, W. Kasprzak, J.H. Sokołowski, A novel approach to the design and optimisation of aluminium cast component heat treatment processes using advanced UMSA physical simulations, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 139-142.
  • [23] L.A. Dobrzański , M. Król, T. Tański, Thermal analysis, structure and mechanical properties of the MC MgAl3Zn1 cast alloy, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 167-174.
  • [24] L.A. Dobrzański, T. Tański, L. Cížek, Heat treatment impact on the structure of die-cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 431-434.
  • [25] G. Moskal, Thermal barrier coatings: characteristics of microstructure and properties, generation and directions of development of bond, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 323-331.
  • [26] L.A. Dobrzański, M. Król, T. Tański, Effect of cooling rate and aluminum contents on the Mg-Al-Zn alloys' structure and mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 613-633.
  • [27] L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzak, Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy, Journal of Materials Processing Technology 191 (2007) 317-320.
  • [28] L.A. Dobrzański, W. Borek, R. Maniara, Influence of the crystallization condition on Al-Si-Cu casting alloys structure, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 211-214.
  • [29] L.A Dobrzański, K. Labisz, R. Maniara, Microstructure investigation and hardness measurement in Al-Ti alloy with additions of Mg after heat treatment, Proceedings of the 13th International Scientific Conference “Congress of Materials and Manufacturing Engineering and Technology” COMMENT’2005, Gliwice-Wisła, 2005.
  • [30] J.H. Sokołowski, X-C. Sun, G. Byczyński, D.O. Northwood, D.E. Pentod, R. Thomas, The removal of copper phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment Journal of Materials Processing Technology 53 (1995) 174-180.
  • [31] L.A. Dobrzański, R. Maniara, J.H. Sokołowski, The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 217-220.
  • [32] L.A. Dobrzański, W. Kasprzak, J Sokołowski, R. Maniara, M. Krupiński, Applications of the derivation analysis for assessment of the ACAlSi7Cu alloy crystallization process cooled with different cooling rate, Proceedings of the 13th International Scientific Conference “Congress of Materials and Manufacturing Engineering and Technology” COMMENT’2005, Gliwice-Wisła, 2005.
  • [33] L.A Dobrzański, K. Labisz, R. Maniara, Microstructure investigation and hardness measurement in Al-Ti alloy with additions of Mg after heat treatment, Proceedings of the 13th International Scientific Conference Conference “Congress of Materials and Manufacturing Engineering and Technology” C0MMENT’2005, Gliwice-Wisła, 2005.
  • [34] L.A. Dobrzański, T. Tański, J. Domagała, S. Malara, M. Król, Effect of high power diode laser surface melting and cooling rate on microstructure and properties of magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 238-257.
  • [35] L.A. Dobrzański, W. Kasprzak, M. Kasprzak, J.H. Sokołowski, A novel approach to the design and optimization of aluminum cast component heat treatment processes using advanced UMSA physical simulations, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 139-142.
  • [36] W. Kasprzak, J.H. Sokołowski, W. Sahoo, L.A. Dobrzański, Thermal and structural characteristics of the AZ50 magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 179-182.
  • [37] L.A. Dobrzanski, W. Kasprzak, J.H. Sokołowski, Analysis of the Al-Si Alloy structure development using thermal analysis and rapid quenching techniques, Proceedings of the 12th Scientific International Conference "Achievements in Mechanical and Materials Engineering" AMME'2003, Gliwice-Zakopane, 2003, 225-228.
  • [38] L.A. Dobrzański, M. Król, T. Tański, R. Maniara, Effect of cooling rate on the solidification behaviour of MC MgAl6Zn1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 65-69.
  • [39] W.T. Kierkus, J.H. Sokołowski, Recent advances in cooling curve analysis: A new method for determining the 'base line' equation, AFS Transactions 107 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-766e5ce4-3004-427b-b3d2-fd571e0d5067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.