PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and surface analysis of chemical vapor deposited boron doped aluminum nitride thin film on aluminum substrates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical vapor deposition (CVD) process was conducted for synthesis of boron (B) doped aluminum nitride (B-AlN) thin films on aluminum (Al) substrates. To prevent melting of the Al substrates, film deposition was carried out at 500 °C using tert-buthylamine (tBuNH2) solution delivered through a bubbler as a nitrogen source instead of ammonia gas (NH3). B-AlN thin films were prepared from three precursors at changing process parameters (gas mixture ratio). X-ray diffraction (XRD) technique and atomic force microscope (AFM) were used to investigate the structural and surface properties of B-AlN thin films on Al substrates. The prepared thin films were polycrystalline and composed of mixed phases {cubic (1 1 1) and hexagonal (1 0 0)} of AlN and BN with different orientations. Intensive AlN peak of high intensity was observed for the film deposited at a flow rate of the total gas mixture of 25 sccm. As the total gas mixture flow decreased from 60 sccm to 25 sccm, the crystallite size of AlN phase increased and the dislocation density decreased. Reduced surface roughness (10.4 nm) was detected by AFM for B-AlN thin film deposited on Al substrate using the lowest flow rate (25 sccm) of the total gas mixture.
Wydawca
Rocznik
Strony
395--403
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
  • Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM), Minden,Pulau Pinang; 11800, Malaysia
  • Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM), Minden,Pulau Pinang; 11800, Malaysia
Bibliografia
  • [1] FENG Z.C., III-Nitride Semiconductor Materials,World Scientific, Taiwan, 2006.
  • [2] CHAUDHURI J., NYAKITI L., LEE R.G., GU Z., EDGAR J.H., WEN J.G., Mater. Charact., 58 (2007), 672.
  • [3] OLIVARES J., GONZÁLEZ-CASTILLA S., CLEMENT M., SANZ-HERVÁS A., VERGARA L., SANGRADOR J., IBORRA E., Diam. Relat. Mater., 16 (2007), 1421.
  • [4] KAR J.P., BOSE G., TULI S., Scripta Mater., 54 (2006), 1755.
  • [5] ZHANG J.X., CHENG H., CHEN Y.Z., UDDIN A., YUAN S., GENG S.J., ZHANG S., Surf. Coat. Tech., 198 (2005), 68.
  • [6] XU X.H., WU H.S., ZHANG C.J., JIN Z.H., Thin Solid Films, 388 (2001), 62.
  • [7] VISPUTE R.D., NARAYAN J., WU H., JAGANNADHAM K., J. Appl. Phys., 77 (1995), 431.
  • [8] VISPUTE R.D., WU H., NARAYAN J., Appl. Phys. Lett., 67 (1995), 1549.
  • [9] LU H., SCHAFF WI. J., HWANG J., WU H., KOLEY G., EASTMAN L.F., Appl. Phys. Lett., 79 (2001), 1489.
  • [10] GUERRERO R.M., GARCIA J.R.V., Superficie y Vacio, 9 (2001), 82.
  • [11] MORITA M., UESUGI N., ISOGAI S., TSUBOUCHI K., MIKOSHIBA N., Jpn. J. Appl. Phys., 20 (1981), 17.
  • [12] CHUBACHI Y., SATO KI., KOJIMA K., Thin Solid Films, 122 (1984), 259.
  • [13] ANDREW R.B., OpenStax CNX., July 14 (2009).
  • [14] ROMAN Y.G., ADRIAANSEN A.P.M., Thin Solid Films, 169 (1989), 241.
  • [15] EGASHIRA Y., KIM H.J., KOMIYAMA H., J. Am. Ceram. Soc., 77 (1994), 2009.
  • [16] HARRIS H., BISWAS N., TEMKIN H., GANGOPADHYAY S., STRATHMAN M., J. Appl. Phys., 90 (2001), 5825.
  • [17] AZEMA N., DURAND J., BERJOAN R., DUPUY C., COT L., J. Eur. Ceram. Soc., 8 (1991), 291.
  • [18] GORDON R.G., HOFFMAN D.M., RIAZ U., J. Mater. Res., 6 (1991), 5.
  • [19] DUPUIE J.L., GULARI E., J. Vac. Sci. Technol. A, 10 (1992), 18.
  • [20] JONES A.C., RUSHWORTH S.A., HOULTON D.J., ROBERTS J.S., ROBERTS V., WHITEHOUSE C.R., CRITCHLOW G.W., Chem. Vapor Deposit, 2 (1996), 5.
  • [21] ROBERTS V., ROBERTS J.S., JONES A.C., RUSHWORTH S., In MRS online proceedings, Cambridge University Press, London, 1995, p. 395.
  • [22] RUSHWORTH S.A., BROWN J.R., HOULTON D.J., JONES A.C., ROBERTS V., ROBERTS J.S., CRITCHLOW G.W., Adv. Mater. Opt. Elec., 6 (1996), 119.
  • [23] JONES A.C., AULD J., RUSHWORTH S.A., HOULTON D.J., CRITCHLOW G.W., J. Mater. Chem., 4 (1996), 1591.
  • [24] WISTRELA E., BITTNER A., SCHNEIDER M., REISSNER M., SCHMID U., J. Appl. Phys., 121 (2017), 115302.
  • [25] PAN D., JIAN J. K., SUN Y. F., WU R., J. Alloy. Compd., 519 (2012), 41.
  • [26] XIONG J., GUO P., GUO F., SUN X., GU H., Mater. Lett., 117 (2014), 276.
  • [27] ENDO Y., SATO T., KAWAMURA Y., YAMAMOTO M., Mater. Trans., 48, (2007), 465.
  • [28] FELMETSGER V.V., MIKHOV M.K., 2011 IEEE Int. Ultrasonics Sympos. Proc., (2011) 835.
  • [29] MOLINA S.I., SANCHEZ A.M., PACHECO F.J., GARCIA R., SÁNCHEZ-GARCIA M.A., SANCHEZ F.J., CALLEJA E., Appl. Phys. Lett., 74 (1999), 3362.
  • [30] ONG Z.Y., SHANMUGAN S., MUTHARASU D., IJETT, 17 (4), (2014), 192.
  • [31] PIERSON H.O., Handbook of chemical vapor deposition: principles, technology and applications, William Andrew Publishing, New York, 1999.
  • [32] SONG J.H., HUANG J.L., LU H.H., SUNG J.C., Thin Solid Films, 516 (2007), 223.
  • [33] WITTHAUT M., CREMER R., REICHERT K., NEUSCHÜTZ D., Thin Solid Films, 377 (2000), 478.
  • [34] GORDILLO G., FLREZ J.M., HERNANDEZ L.C., Sol. Energ. Mat. Sol. C., 37 (1995), 273.
  • [35] PERRY A.J., J. Vac. Sci. Tech. A, 8 (1990), 1351.
  • [36] GERLICH D., DOLE S.L., SLACK G.A., J. Phys. Chem. Solids, 47 (1986), 437.
  • [37] http://www.ioffe.ru/SVA/NSM/Semicond/BN/ mechanic.html, accessed on: 08.13.2014.
  • [38] THOKALA R., CHAUDHURI J., Thin Solid Films, 266 (1995), 189.
  • [39] STOKES A.R., WILSON A.C.J., Proc. Phys. Soc., 56 (1944), 174.
  • [40] PAL U., SAMANTA D., GHORAL S., SAMANTARAY B.K., CHAUDHURI A.K., J. Phys. D: Appl. Phys., 25 (1992), 1488.
  • [41] CULLITY B.D., Elements of X-ray Diffraction, 2nd ed., Addition-Wesley, London, 1978.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7669e67c-503a-4618-8e44-d2be79ba6b48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.