PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A robust model free controller for a class of SISO nonaffine nonlinear systems: Application to an electropneumatic actuator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Rocznik
Strony
437--458
Opis fizyczny
Bibliogr. 34, rys., tab., wykr., wzory
Twórcy
  • LAJ, Faculty of Science and Technology, University of Jijel, BP. 98, Ouled Aissa, 18000, Jijel, Algeria
autor
  • LAJ, Faculty of Science and Technology, University of Jijel, BP. 98, Ouled Aissa, 18000, Jijel, Algeria
  • LCP, Department of Automatic Control, National Polytechnic School, Avenue Pasteur, Hassen Badi, BP 182, El-Harrach, Algiers, Algeria
Bibliografia
  • [1] M. Fliess and C. Join: Model-free control and intelligent pid controllers: Towards a possible trivialization of nonlinear control?. IFAC Proceedings Volumes, 42(10), (2009), 1531–1550.
  • [2] M. FLiess and C. Join: Model-free control. International Journal of Control, 86(12), (2013), 2228–2252.
  • [3] P.-A. Gedouin, E. Delaleau, J.-M.Bourgeot, C. Join, S. Arbab-Chirani, and S. Calloch: Experimental comparison of classical pid and model-free control: position control of a shape memory alloy active spring. Control Engineering Practice, 19(5), (2011), 433–441.
  • [4] F. Lafont, J.-F. Balmat, N. Pessel, and M. Fliess: A model-free control strategy for an experimental greenhouse with an application to fault accommodation. Computers and Electronics in Agriculture, 110 (2015), 139–149.
  • [5] T. M. Ridha and C. H. Moog: Model free control for type-1 diabetes: A fasting-phase study. IFAC-PapersOnLine, 48(20), (2015), 76–81.
  • [6] Y. A. Younes, A. Drak, H. Noura, A. Rabhi, and A. E. Hajjaji: Robust model-free control applied to a quadrotor UAV. Journal of Intelligent & Robotic Systems, 84(1), (2016), 37–52.
  • [7] R. C. Roman, R. E. Precup, and M. B. Radac: Model-free fuzzy control of twin rotor aerodynamic systems. in: 25th Mediterranean Conference on Control and Automation (MED), 2017, 559–564.
  • [8] P. Polack, B. d’Andrea-Novel, M. Fliess, A. de La Fortelle, and L. Menhour: Finite-time stabilization of longitudinal control for autonomous vehicles via a model-free approach. IFAC-PapersOnLine, 50(1), (2017), 12533–12538.
  • [9] O. Bara, M. Fliess, C. Join, J. Day, and S.M. Djouadi: Toward a model-free feedback control synthesis for treating acute inflammation. Journal of Theoretical Biology, 448 (2018), 26–37.
  • [10] M. B. Kadri: Model-free fuzzy adaptive control for mimo systems. Arabian Journal for Science and Engineering, 42(7), (2017), 2799–2808.
  • [11] L. dos Santos Coelho, M. W. Pessoa, R. R. Sumar, and A. A. R. Coelho: Model-free adaptive control design using evolutionary-neural compensator. Expert Systems with Applications, 37(1), (2010), 499–508.
  • [12] X. Zhang, H. Wang, Y. Tian, L. Peyrodie, and X. Wang: Model-free based neural network control with time-delay estimation for lower extremity exoskeleton. Neurocomputing, 272 (2018), 178–188.
  • [13] R.-E. Precup, M.-B. Radac, R.-C. Roman, and E. M. Petriu: Model-free sliding mode control of nonlinear systems: Algorithms and experiments. Information Sciences, 381 (2017), 176–192.
  • [14] K. G. Vamvoudakis and H. Ferraz: Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance. Automatica, 87 (2018), 412–420.
  • [15] E. Madadi and D. Soffker: Comparison of different model-free iterative learning control methods concerning a nonlinear mechanical structure. in: 2017 11th Asian Control Conference (ASCC), 2017, 1560–1565.
  • [16] J. Zhang, H. Zhang, Y. Luo, and T. Feng: Model-free optimal control design for a class of linear discrete-time systems with multiple delays using adaptive dynamic programming. Neurocomputing, 135 (2014), 163–170.
  • [17] Z. Yakoub, M. Amairi, M. Chetoui, B. Saidi, and M. Aoun: Model-free adaptive fractional order control of stable linear time-varying systems. ISA Transactions, 67 (2017), 193–207.
  • [18] M. B. Radac, R. E. Precup, and E. M. Petriu: Model-free primitive-based iterative learning control approach to trajectory tracking of mimo systems with experimental validation. IEEE Transactions on Neural Networks and Learning Systems, 26(11), (2015), 2925–2938.
  • [19] S.-Y. Chen and S. Gong: Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94 (2017), 111–128.
  • [20] S. Han, H. Wang, and Y. Tian: Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 dof multi-functional lower limb exoskeleton. Advances in Engineering Software, 119 (2018), 38–47.
  • [21] G. Stanley: Big data approximating control (bdac) – a new model-free estimation and control paradigm based on pattern matching and approximation. Journal of Process Control, 67 (2018), 141–159.
  • [22] A. Tikhonov: Systems of differential equations containing a small parameter multiplying the derivative (in Russian). Mat. Sborn., 31(73), (1952), 575–586.
  • [23] N. Fenichel: Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31(1), (1979), 53–98.
  • [24] P. Kokotović, H. Khalil, and J. O’Ŕeilly: Singular Perturbations Methods in Control: Analysis and Design. Academic Press, New York, 1986.
  • [25] H. K. Khalil: Nonlinear systems, 3rd Edition. Prentice Hall, Upper Saddle River, NJ, 2002.
  • [26] J.-J. Slotine and W. Li: Applied nonlinear control. Prentice Hall, Englewood Cliffs, New Jersey, 1991.
  • [27] A. Isidori: Nonlinear control systems, Communications and Control Engineering. Springer, 1995.
  • [28] N. Hovakimyan, E. Lavretsky, and C. Cao: Dynamic inversion for multivariable non-affine-in-control systems via time-scale separation. International Journal of Control, 81(12), (2008), 1960–1967.
  • [29] J. Teo and J. How: On approximate dynamic inversion. Tech. Rep. ACL09-01, Massachusetts Institute of Technology, Cambridge, MA, Aerospace Controls Lab., 2009.
  • [30] S. Oh and H. K. Khalil: Output feedback stabilization using variable structure control. International Journal of Control, 62(4), (1995), 831–848.
  • [31] S. Oh and H. K. Khalil: Nonlinear output-feedback tracking using high-gain observer and variable structure control. Automatica, 33(10), (1997), 1845–1856.
  • [32] M. Taleb, A. Levant, and F. Plestan: Pneumatic actuator control: Solution based on adaptive twisting and experimentation. Control Engineering Practice, 21(5), (2013), 727–736.
  • [33] A. Estrada and F. Plestan: Second order sliding mode output feedback control with switching gains – application to the control of a pneumatic actuator. Journal of the Franklin Institute, 351(4), (2014), 2335–2355.
  • [34] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak: New methodologies for adaptive sliding mode control. International Journal of Control, 83(9), (2010), 1907–1919.
Uwagi
EN
1. The authors would like to thank Professor Franck Plestan for his help in the experimental study and for his constructive suggestions that improved this work.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7667277a-3f2f-43db-b1bd-7d9dab5e9bcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.