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COGNITIVE OPTIMIZATION OF AN AUTOMOTIVE REAR-AXLE DRIVE 
PRODUCTION PROCESS 

While optimizing tolerances in tolerance chains only single characteristics or objectives of single process steps 
are considered, there is no information exchange across all processes. Interdependencies between processes, 
materials, means of production and individuals acting in this environment as well as their effect on product 
variations are usually not fully understood. In order to face a dynamisation of process specification, 
interdependencies have to be identified and integrated in future production. The holistic consideration of the 
process chain focused on the allocation of tolerances allows detection of correlations and interdependencies in 
the production process itself. By this, process chain information is traced back to conduct the right optimizations 
at the right place in the process chain. But therefore intelligent controlling mechanisms are needed to analyze and 
optimize even complex production systems with multi-level interdependencies. Such a cognitive system is able to 
form the core of self-optimizing production system.  Using this cognitive system, the production process of an 
automotive rear-axle drive is optimized in order to minimize disturbances created by structure-borne sound 
emissions. Therefore several cognitive technologies have been evaluated to fulfil specific tasks in process 
optimization. 

1. INTRODUCTION 

Due to an increasing amount of competitive pressure, the manufacturing industry faces 
a difficult situation. New competitors, who typically generate their competitive advantage 
through lower labour costs, are steadily improving the technology of their production 
capabilities and create a massive cut-throat competition [1]. Companies are forced to 
innovate continuously to maintain their leadership in production technology. At the same 
time, production or labour costs must be decreased and productivity increased, since 
changing consumer behaviour demands that even innovative products have to be placed on 
the market at the lowest possible price. Additionally, differences between customers’ 
requirements and the company’s innovation targets complicate business [2]. 
_____________ 
1 Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Germany 
2 Fraunhofer Institute for Production Technology IPT, Aachen, Germany 
3 BMW Group, Dingolfing, Germany 
 



Robert SCHMITT, Mario ISERMANN, Carsten WAGELS, Nico MATUSCHEK 

 

72 

Technologically demanding products are manufactured by adoption of modern 
production technology. 

The increasing complexity of ambitious technological processes requires a new kind  
of controlling mechanisms, which can only be reached by sophisticated optimizations. 

2. THE POLYLEMMA OF PRODUCTION 

The demand for economical high quality products and efficient and effective 
production systems requires new methods to widen the optimal ‘operating range’ of the 
production system. In order to achieve less overall unit costs, the two main dilemmas  
of production technology must be solved, or at least be reduced. 

The first dilemma exists between scale and scope, and the second between planning- 
and value-orientation. A production system that is focused on economies of scope is highly 
flexible and realizes one-piece-flow, i.e. there is no build-up at any given stage in the 
process. Products are produced for a specific customer rather than added to inventory. In 
contrast, a production system geared to economies of scale gains cost advantages by 
concentrating on robust, repeatable processes. Increasing product flexibility in this context is 
generally expensive and the main constraint in solving this dilemma. The second dilemma 
can be localized between value-oriented production with little or no planning efforts and an 
optimized, planning-oriented production. The combination of both dilemmas leads to the so-
called polylemma of production (Fig. 1) [3]. 

 

Fig. 1. The polylemma of production 

To reduce this polylemma, new strategies for production systems are required. Self-
optimizing production is one new approach which implements value-oriented activities with 
increased planning efficiency in order to enhance process and product quality. Self-
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optimization offers a new perspective on production and assembly systems by adapting the 
systems behaviour to dynamic objectives in technological and organizational areas. 
Previously acquired knowledge is transferred and used in new and similar production 
environments. An increase in the quality of the production system, which will secure 
sustained production for manufacturing companies, can thus be achieved [4]. 

3. SELF OPTIMIZATION 

Due to changing conditions, the results of planning can lead to suboptimal operating 
points. Interactions between influencing elements and their effects on the products are 
usually not entirely known, which makes it impossible to deliver an accurate statement about 
the impact of changes on the total production system. Only single elements of a production 
system are ever in the focus of an optimization. Under these circumstances the behaviour  
of a production system cannot be predicted entirely, as some elements or sub-systems may 
affect others. A possible solution to this problem is a system designed to pursue different 
objectives and adapt its behaviour depending on the actual conditions. While a change in the 
system’s behaviour is controlled externally, i.e. by humans, the decision’s effect on the 
entire system is to be conceivably automated. The adaptation and modification of related 
elements would then be decided by a technical system. 

This results in increased value-orientation as well as decreased planning effort, which 
both support the solution of the polylemma of production. 

Self-optimizing elements can replace the current static planning and management 
processes in both organizational and technological fields [5]. The continuation of this idea 
leads to self-optimizing production as a concept of overall optimization. In any defined 
system, the principle of self-optimization describes the continuous repetition of the 
following three actions [6]: Analysis of the current situation, determination of the system 
targets and adaptation of the system behaviour. 

In a broader sense, a self-optimizing system is able to accomplish a defined objective. 
While classic closed control loops dictate the behaviour of the system by means of externally 
introduced target parameters, a self-optimizing system, on the other hand, is able to redefine 
the various sub-objectives and adapt the control process dynamically. 

In the following concepts, self-optimization is realised within technological processes, 
while also other levels of production systems can be focussed. 

An identified issue is to dynamically adapt single objectives within a production 
process to reach the desired function of the product. While the function of the product is the 
superior objective, adapted objectives can be single dimensions of the product.  
A dynamisation of crucial process parameters will reduce costs, because other parameters 
can be expanded without losing the required product characteristics. Simultaneously, the 
flexibility of the production process in reference to changes of the product will increase 
significantly. 
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Within the research project ‘Integrative Production Technology for High-Wage 
Countries’ of RWTH Aachen University, a project to optimize production processes by 
applying cognitive technologies was defined, named ’Cognitive Tolerance Matching’. 

The purpose is to analyze an entire production from manufacture to final assembly, 
monitoring the resulting quality, in order to initiate adequate optimizations. 
Interdependencies between variations in the production process and the resulting product 
have to be identified to build an adequate model of the processes. In order to detect these 
interdependencies, every parameter that can have an impact to the function of the final 
product is measured. 

To conduct the optimizations, information is sent back to the correct place within the 
process chain. This requires intelligent controlling mechanisms. Thus the aim is to develop  
a control system for production processes using cognitive technologies, that is able to 
analyze and optimize even complex production systems with multi-level  interdependencies. 
Such a cognitive system forms the core of a self-optimizing factory. [7] 

Cognitive Tolerance Matching uses a cognitive architecture called Soar as well as 
technologies like artificial neural networks and data mining to build a cognitive system 
acting as a self-optimizing controlling application. 

3.1. SOAR 

Soar is a cognitive architecture based on the early systems of GPS and OPS5. In Soar, 
target-oriented problem solving takes place as a heuristic search in problem spaces. The 
search consists of a successive application of operators until the target situation is reached. 
In addition to classical planning systems, the search in the problem space is implemented in 
a complex decision cycle. For knowledge representation, Soar offers two concepts: a short-
term and a long-term memory. 

Information processing is conducted in two phases. In the first phase, the knowledge 
search phase, productions of the long-term memory, which work on the working memory, 
fire. This process generates new objects, which in turn activate other productions.  
In addition, preferences, which are used in the second phase, are generated. Then, the 
decision procedure selects an operator using the actual knowledge in the short-term memory. 
By successive application of operators, a target will be reached. In case of a dead end, a sub-
target is generated to lead the search process out of the dead end. If the dead end cannot be 
solved in this way, problem space independent mechanisms like back-tracking are used. To 
avoid dead ends, a chunking learning mechanism is activated each time a route out of a dead 
end was found. If an agent finds itself in the same situation later, the learned rule fires and 
the dead end is avoided. Additionally, reinforcement learning remembers decisions by 
reward points given for reaching a target or a sub-target.  

Soar is already used very successfully to simulate human behaviour, e.g. for robots and 
steering artificial enemies in flight simulators. First prototypes of a Soar-based systems for 
process optimizations are also very promising. [8]. 
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3.2. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks can be described as a cognitive architecture with sub-
symbolic information processing [9]. Artificial neurons are a technical approach of abstract 
modelling which emulates the processes of a biological nerve cell. Like a biological nerve 
cell, artificial neurons possess input channels used to detect signals in the form of input 
values and one output channel to provide output values. 

An artificial neural network can be trained with sophisticated non-linear functions. 
Like in biological neural networks, the trained knowledge in artificial neural networks is 
represented in the weight structure of the neurons. In the case of supervised learning, the 
network is trained with a set of known input and corresponding output samples; the margin 
of error within the network can be identified using the set-actual comparison. [9] 

3.3. DATA MINING 

Data Mining tools and algorithms are used to detect structures within the production 
data, leading to knowledge that can be used to derive optimization decision. Data Mining 
also can be used to reduce model complexity by analysis of the influence of single 
parameters or characteristics. So data not being important can be identified in order to 
concentrate on important data. 

3.4. A COGNITIVE SYSTEM ARCHITECTURE 

With respect to the tasks mentioned, focus is to build a self-optimizing control system 
using the technologies described. In the following, a combination of data mining tools, 
artificial neural networks and Soar is introduced as a possible solution to optimize 
sophisticated production processes, arranged with regard to their ability to fulfil the tasks  
of cognitive information processing in production systems.  

First, production data is analysed by data mining algorithms to reduce model 
complexity and to detect main influence parameters. Then, neural networks are trained to 
emulate the behaviour of the production system. 

Soar generates decisions from existing rules and validates or extends them during their 
application. Soar conducts a variation of manufacturing parameters, learns from the effect  
of the particular application and transforms this knowledge into new rules. 

Soar is the main element in the proposed architecture. It varies production parameters 
and neural networks subsequently evaluate these parameter sets. Finally, reinforcement 
learning allows Soar to also learn from the results. This ensures an effective and efficient 
search in the space of possible production parameters. The project team implemented  
a special clustering of achieved targets and a resulting distribution of reward points to enable 
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Soar to learn for future problems, so results from merely similar problems are taken into 
account. 

The detailed interaction of the combined systems is organized as follows: Starting with 
a given vector of parameters and a basic set of rules, Soar conducts a variation of these 
parameters and sends it to the pre-trained neural network, which evaluates the parameter sets 
and sends obtained results, thus the product characteristics assumed to be produced in the 
real production system, back to Soar. The results are calculated using the networks’ 
knowledge of the production processes. 

This procedure is repeated until the results obtained by the neural network show 
conclusively that all product demands would be met in the actual production. Then this 
parameter set is used in the real production process. If the created product fulfils all the 
demands, Soar receives a success message. Otherwise this data will also be fed back, to be 
able to learn from any miscalculations and to correct the rules used. If derivations occur, the 
network will be re-trained. This enables the system to adapt to the new situation and to use 
its new knowledge for future decisions. 

Decisions are therefore made by a systematic decision-making process performed by 
Soar. On the one hand Soar considers fixed rules of known correlations in the production 
system, on the other hand reinforcement learning is used to obtain further process 
knowledge. Improvements can be achieved systematically and more quickly than by 
algorithms that are not able to learn from similar, already solved problems. 

4. CURRENT APPLICATIONS 

4.1. BMW REAR AXLE DRIVE PRODUCTION 

The appliance of the developed methods demands a use case which has been initiated 
in  cooperation with  WZL  of  the  RWTH  Aachen  University,  Fraunhofer  IPT and BMW  
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Group. For that purpose a project to optimize the emitted acoustic of rear-axle-
transmissions has been defined. The challenge lies in the holistic examination of the entire 
process chain, implying the production of the gear tooth system for power transmission and 
the complete assembly process of the differential (Fig. 2). 

 
Challenge 

The effect regarding the driving comfort of modern vehicles represents an important 
criterion for customers deciding to buy a certain car. The acoustic behaviour can be regarded 
as a fundamental differentiating factor between cars. Therefore, the noise level of vehicles 
has become more important during the last years. The objective of the development and 
production of rear-axle-transmissions is consequently excellent noise behaviour in addition 
to its reliability. The challenge in production lies in controlling the tolerance chain and its 
interdependencies. As an example the position of the tooth contact can be observed, which is 
basically determined by the gear cutting. Distortion due to the hardening of the parts, the 
finish by lapping the gear sets and finally the assembly position in the casing can have  
a significant impact on the position of the tooth contact. In addition to the calibration of the 
process parameters, tolerances are the fundamental factor. This example demonstrates the 
complexity of this process chain. 

The objective of the use case is to analyze the interactions of the various tolerances and 
its impact on the rear-axle-drive’s noise behaviour. Optimizing the production process in the 
following will lead to improved competitiveness. Therefore, a 3-step approach is developed 
as follows:  

1) Analysis of dependencies (Identifying most significant parameters), 2) Knowledge 
acquisition about the effects of each production parameter and tolerance and 3) Control  
of process parameters with Cognitive Tolerance Matching (CTM). 

 
Analyzing the process chain 

The analysis of dependencies within the process chain demands a consistent collection 
of measured data of a spot sample of a sufficient amount of parts. Therefore, a lot of 80 gear 
sets is accompanied during manufacturing and measured after each production step. For that 
purpose, special testing devices and above all 3D-coordinate measuring machines are used 
to check the flank of tooth topography and typical quality characteristics for tooth systems 
like true running and flank pitch. The objective is maximizing the information gain about the 
geometrical properties of the gear sets during the production process. Subsequent to the gear 
set production, inspected subassembly components are employed to assemble rear-axle 
transmissions using the checked gear sets. The assembly is completely documented, to gain 
information about the relative position between the drive pinion and the crown gear and in 
addition about the pre-load of the bearings. The noise behaviour is subsequently detected 
using a custom-built rear-axle-transmission acoustics test bench.  The gauge for the emitted 
sound is the structure-borne noise applied to the first order of meshing. Matching the results 
of the test bench with the subjective evaluation of the noise behaviour of the rear-axle 
transmissions in the car by test operators shows excellent correlation. 



Robert SCHMITT, Mario ISERMANN, Carsten WAGELS, Nico MATUSCHEK 

 

78 

The evaluation of the measured data turns out to be a great challenge because of the 
multiplicity of parameters, which cannot be handled by using basic statistical methods. An 
approach is the application of multivariate methods of analysis as well as data mining tools 
like artificial neural networks and regression trees. Particularly structure detection methods 
like previously mentioned data mining tools helps to analyse the interdependencies within 
the tolerance chain. An implementation of these methods however implies an exact data 
preparation including a correlation analysis within the data array to avoid highly correlating 
records and a variance analysis to delete records having a lack of information. The results of 
the examinations with data mining deliver the main factors having an impact on the rear-
axle-transmission noise behaviour. Subsequently the effect of the main factors can be 
validated by series of tests using a method named design of experiments (DoE). 

 
Controlling the process chain via CTM 

Following the identification of the factors having the main impact on the noise 
behaviour and developing knowledge about their effect direction, strategies to implement 
cognitive control loops have to be modelled. Therefore, investigations must be carried out 
which parameters of the process chain can be measured in general and which ones must be 
measured in any case. Furthermore, the inspection cycle time in the process has to be 
considered and the measured data must be automatically prepared for continuous evaluation 
with CTM. Implementation of intervention zones for the CTM system is significant to 
control the production steps of capital importance. At this juncture the development leads 
from a quality backward stream to a quality forward stream in process direction. The 
objective is the functionally oriented production with the potential to reproduce parts having 
variations due to tolerances in a process step by adjusting the following one with CTM. This 
leads to improved noise behaviour with simultaneous consideration of minimisation of scrap 
and consequently to a continuous increase of competitiveness. 

4.2. SHAFT-TO-COLLAR CONNECTION 

In addition to the rear-axle drive application, a lot of development work is conducted 
with a much simpler manufacturing case. This is needed to instantly evaluate if Cognitive 
Tolerance Matching brings the expected results. To these ends, a simple shaft-to-collar 
connection has been developed. The connection combines elements of manufacture and 
assembly, which offer a lot of possibilities to influence the production process. This 
application will assist in the development and evaluation of cognitive technologies for 
production processes and serve as a demonstrator of the Cognitive Tolerance Matching 
system. 

The connection consists of two rigidly connected collars fitted around a cylindrical 
shaft, which is designed to fail when a specified torque is applied to the shaft (Fig. 3). One 
collar features a tapered press fit. The turning parameters and the torque for assembly are 
defined by the cognitive system. 
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Fig. 3. Shaft-to-collar connection demonstrator 

The second collar is composed of four separate parts, of which three smaller pieces 
form an inner ring, which can be tightened or loosened around the shaft manually. Adjusting 
the pressure exerted by the collar on the shaft changes the value of torque the connection can 
stand without slipping. The goal of the cognitive system is to reach a constant torque at 
which the whole connection begins to slip. Therefore it has to react to changing materials 
and other influences in manufacturing and assembly. In this manner, the self-optimizing 
system is able to accomplish the defined goal by redefining the sub-objectives and adapting 
the production process. 

5. CONCLUSIONS 

The production industry is under increasing pressure due to global competition. To 
retain economically important production, an exact understanding of the production process 
is mandatory. The new approach bases on self-optimizing elements, which simultaneously 
emphasize value-oriented processes and decrease the necessary manual planning effort. The 
underlying goal is the independent enhancement of system, process and product quality. 

The approach presented in this paper deals with a cognitive controlling system for 
production systems, whose intelligent combination of Soar and artificial neural networks 
enables it to adapt to changing conditions quickly and efficiently. 
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