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A transient flow formation of an incompressible fluid through a horizontal porous channel assuming a ramped 
pressure gradient is considered with the velocity slip boundary conditions. The flow is a laminar flow caused by 
ramped pressure gradient along the flow direction. The equation governing the flow is modeled, and solved  by 
the Laplace transformation technique to obtain a semi-analytical solution under slip boundary conditions. It was 
noted that the flow velocity increases as the slip parameter is increased. 
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1. Introduction  
 

Fluid flow in a porous channel is a known problem that occurs in many physical situations such as in 
filtration processes, material processing, and in water bodies [1]. Fang [2, 3] studied the fluid flow through a 
horizontal porous channel that allows mass suction and injection, where the influence of mass transfer on the 
transitory velocity distribution and temperature profiles were analysed. The problem of a fully developed 
laminar flow of a viscous incompressible fluid through a horizontal porous channel with bottom injection 
and top suction was studied in the presence of a constant pressure gradient [4]. It was found that the average 
velocity decreases with increasing the Reynolds number. Khaled and Vafai [5] analyzed the Stokes and 
Couette flows created by an oscillatory motion at the wall, when the slip boundary condition is assumed. It 
was noticed that the wall slip decreases the transitory velocity for the Stokes flow while a little transitory 
effect was noticed for the Couette flow for larger and smaller values of the wall slip coefficient and gap 
thickness, respectively. A study on the unsteady hydromagnetic Couette flow through a porous channel, 
caused by the ramped motion of one of the porous plates was carried out. It was assumed that the horizontal 
channel was formed by two porous plates of uniform permeability, where suction and injection occur at the 
same rate [6]. Authors in [7] analyzed the transitory free convection and mass transfer flow of an 
incompressible fluid through a vertical channel when the Dufour effect is present. The plates bounding the 
channel are assumed to have species concentration as well as ramped wall temperature. The study reveals 
that the ramped boundary conditions make the flow variables lower compared to the case of constant 
boundary conditions.  

The slip boundary condition or partial slip boundary conditions are often encountered in several 
types of fluid flow configuration, especially in ducts, tubes and annulus, and they are mostly considered for 
obtaining accurate results. Jha and Gambo [8] studied the hydrodynamic behavior of slip flow in a 
curvilinear concentric cylinder, assuming an exponentially growing time-dependent pressure gradient. It was 
noticed that high level of Dean velocity is achieved due to the exponentially growing time-dependent 
pressure gradient as well as the slip wall coefficient. Ahmad et al. [9] studied the MHD fluid flow of an 
incompressible viscous fluid near an infinite plate in a rotating frame, accelerating periodically with slippage 
condition. It was noted that higher values of the slip parameter which represents lower roughness at the 
surface, reduce both the axial and transverse velocities. Nagayama et al. [10] carried out an experimental 
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study on the effects of the boundary condition at the solid-liquid interface on the single-phase convective 
heat transfer characteristics in microchannel or nanochannel flow. They observed that the solid-liquid 
interfacial resistance which can be expressed as the slip length or thermal slip length can be ignored when 
these lengths are comparable with the hydraulic diameter. Wang [11] studied the interaction between surface 
slip and system rotation orthogonal to the flow direction. It was found that for Poiseuille flow, slip increases 
the longitudinal flow rate at low rotation and decreases it at high rotation. Fang and Lee [12] solved exactly 
the transitory incompressible Couette flow and fully developed temperature profiles for slightly rarefied 
gases, through a channel with porous walls. It was noticed that the slip parameter can alter the heat transfer 
characteristics and temperature profiles at the walls. Wang [13] discussed briefly the review of analytical 
solutions for slip- flow in channels and ducts. These analytical findings are used as accuracy standards for 
estimate methods involving numerical and semi-numerical approach. An investigation on an unsteady Dean 
flow of an incompressible fluid with homogenous slip, non-homogenous slip, and no-slip boundary condition 
was conducted [14]. It was noticed that the velocity profile of the fluid amplifies at the wall with the greatest 
slip coefficient. Jha and Aina [15] considered the thermal as well as hydrodynamic steady flow through a 
vertical micro-porous-channel(MPC) subjected to suction and injection along the porous plates and assuming 
a temperature jump and velocity slip at the boundaries. It was noticed that the possibility of transpose flow 
formation reduces at the cold wall of the channel as the Knudsen number of the velocity slip parameter 
grows. The laminar pressure driven flow through a horizontal porous channel with velocity slip, was studied 
in [16]. The computer extended series (CES) and homotopy analysis methods (HAM) were adopted to solve 
the flow equation due to the advantages they offer. The influence of non-zero velocity slip and pressure 
gradient were analysed. 

This article studies the influence of velocity slip on the transient flow of an incompressible viscous 
fluid through a horizontal porous channel with top suction and bottom injection presented by [2], where we 
assume a ramped pressure gradient as well as velocity slip boundary condition. The novelty of this work is the 
investigation of the effect of the ramped pressure gradient and velocity slip boundary conditions on velocity 
profile of transient flow formation in a horizontal porous channel with suction/injection. The mathematical 
formulation is presented in section 2 of the paper, where the dimensionless equations governing the flow were 
solved subject to the boundary conditions of [2]. The equations were transformed to the Laplace domain by 
using the Laplace transformation technique, Riemann-Sum approximation technique was applied to transform 
the equations back to time domain. Numerical values extracted from the equations in the time domain were 
used for the plotting of graphs.The physical properties of the graphs were also discussed. 
 
2. Mathematical formulation  
 

We examine the transitory flow of an incompressible fluid with slip velocity boundaries, in a horizontal 
porous channel in the presence of a ramped pressure gradient along the flow direction within the porous channel 
where the lower plate is subjected to mass injection velocity wv  and the upper plate is subjected to mass suction 
velocity  wv . 
 The x -axis is selected along the lower porous plate and the y -axis is orthogonal to it. Initially, at t 0≤ , the 
plates and the fluid are assumed to be at rest. At t 0>  the fluid starts to move due to the application of a ramped 

pressure gradient ( )0
dp P F t
dx

=  along the plate direction. The flow is described by the following equations. 

 

  
2

w 2
u u dp uv
t y dx y

∂ ∂ ∂ρ + ρ = − + μ
∂ ∂ ∂

 (2.1) 

 
with initial and boundary conditions as: 
 
  :   t 0 u 0≤ =       for      0 y h≤ ≤ , (2.2) 
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The dimensionless form of equation (2.1) can be obtained as follows by defining the following  
 

   , 
0

uU
U

=      ,yY
h

=       and      2
tvT
h

= , 

 

as used in Fang [2]. Also, ( ) ,
2

0 0
hU P= −
μ

 with 
'
1

1 h
ββ =  and 

'
2

2 h
ββ = , where '

1β  and '
2β  are the slip 

coefficients in dimensional form. 
 Therefore equation (2.1) becomes: 
  

  ( )Re ,
2

2
U U UF T
T Y Y

∂ ∂ ∂+ = +
∂ ∂ ∂

 (2.4) 

where  

  
  Re wv h

v
=  

 
is the Reynold number that is the mass transfer parameter. 
 Subjected to the following boundary conditions. 
 
  :        ,T 0 U 0 at 0 Y 1≤ = ≤ ≤  (2.5) 
 

  

    ,

:

      

1
Y 0

2
Y 1

dUU atY 0
dY

T 0
dUU atY 1
dY

=

=

 = β =
> 

 = −β =


 (2.6) 

 
where ( )F T  is defined as follows, 
 

  ( ) ( ) ( ) ( ) .  0 0
0

1F T TH T T T H T T
T

 = − − −   (2.7) 

 
( )H T  is the Heaviside unit step function as defined in Jha and Jibril [6],  

 

  ( )
,    ,

,    .

0 T 0
H T

1 T 0

<
= 
 ≥

 (2.8) 
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2.1. Problem solution  
 
2.1.1. Transient solution  
 

We apply the Laplace transformation technique to equations (2.4)-(2.6) such that 

( ) ( ) ( ), , , ,sT

0

L U Y T U Y s U Y T e dT
∞

−  = =     as defined in Jha and Jibril [6] then, 

 

  ( ) ,
2

2
d U dURe sU F s

dYdY
− − = −  (2.9) 

 

  

      at       ,

:  

    at      ,

1
Y 0

2
Y 1

dUU Y 0
dY

T 0

dUU Y 1
dY

=

=


= β =


> 

 = −β =


 (2.10) 

 

  ( )( ) ( ) ( )exp 0
2

0

1 sT
L F T F s

s T

 − − = =  (2.11) 

 
where s  is the Laplace parameter. 

The solution to equation (2.9) under boundary conditions (2.10), is obtained by the method of 
undetermined coefficients as: 

 

  ( ) ( ) ( ) ( )Re, exp cosh sinh1 2
F s

U Y s y C y C y
2 s

 =  δ + δ  +    
 (2.12) 

where  Re2
s

4
δ = + . (2.13) 

The constants 1C and 2C  are defined in the Appendix. 
The solutions to equations (2.9) and (2.10) in the time domain are obtained through the application 

of the Riemann-Sum approximation technique which is a tool used for transforming equations from the 
Laplace domain into the time domain [8]. 

The velocity equation can be expressed in the time domain as: 
 

  ( )( ) ( ) ( ) ( )*, , , Re ,
zT

n1

n 1

e 1 i TL U Y s U Y T U Y s U Y 1
T 2 T

ε
−

=

 π = = + ε + −  
   

  (2.14) 

 

where *Re  represents the real part of the summation, i 1= −  is the imaginary number, z is the number of 
terms included in summing up, and ε  is the real part of the Bromwich contour used in the inversion of 
Laplace transform, following [8]. 
 The skin friction for the lower and upper plates is evaluated as: 

 

  Re
1 2

Y 0

dU C C
dY 2=

 = + δ 
 

, (2.15) 
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 (2.16) 

 
2.1.2. Steady state solution 

 
The flow velocity represented by the velocity equation will be constant as the flow time increases, at 

that time the steady state is attained. Therefore the steady state velocity equation is obtained as  
 

  Re
2

s s
2

d U dU 1
dYdY

− = − , (2.17) 

 

     at    ,s
1

Y 0

dUU y 0
dY =

= β =  

   (2.18) 

  
  
   at   .s

2
Y 1

dUU Y 1
dY =

= −β =  

 
The steady state solution is obtained from Eq.(2.17) and boundary conditions (2.18) as  
 

  ( ) ( )Re
Re ReRe

1
s 22

DY 1U Y D exp Y= + − + . (2.19) 

 
where 1D  and 2D  are constants defined in the appendix. 

The steady-state skin frictions are obtained as: 
 

  Re
Re

s
2

Y 0

dU 1 D
dY =

= + , (2.20) 

 

  ( )2
1

1 Re Re
Re

s

Y

dU D exp
dY =

= + . (2.21) 

 
3. Results and discussion 
 

The developed and transitory velocity equations were solved in the previous part for fluid flow 
through a horizontal porous channel with a ramped pressure gradient. In this part of the article, the physical 
properties of the equations that were obtained in the previous part of the article were discussed. Two cases of 
velocity slip are presented, we have the homogenous slip and non-homogenous slip boundary conditions. 

 
CASE I: Homogenous slip. 

 
We present the velocity profiles of the flow of an incompressible viscous fluid assuming a ramped 

pressure gradient as well as homogenous slip coefficients represented by the situation when 1 2β = β = β . 



B.K.Jha and Z.S.Yunus  83 

 
 

Fig.1 Velocity profile for different values of β , corresponding to the ramped pressure gradient. 
 

 
 

Fig.2. Velocity profile for different values of β , corresponding to the constant pressure gradient. 
 

 
 

Fig.3. Velocity profile for different values of Re, corresponding to constant and ramped pressure gradient. 
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Fig.4. Velocity profile for different values of T, corresponding to constant and ramped pressure gradient. 
 

Figures 1, 2 represent the velocity profile for distinct values of the slip parameter for the homogenous 
slip boundary condition. It is noticed that the velocity amplifies with an increase in the slip parameter β . The 
velocity is noted to be faster in the case of a constant pressure gradient and gradual in the case of a ramped 
pressure gradient. Figure 3 shows the velocity profile for different values of ( )Re  for both constant and ramped 
pressure gradient where a rise in ( )Re  indicates mass injection at the bottom wall for both situations. It is 
noticed that a rise in ( )Re  results in a lower magnitude of the velocity in both cases, this happens due to the 
lower speed up rate of the fluid in the flow direction sourced by the pressure gradients for a high level of the 
Reynolds number. Based on this inference the velocity equation is non-dimensionalized by a velocity 
dependent on a pressure gradient. Figure 4 is the velocity profile for different values of ( )T , the velocity was 
noticed to increase with time, the unsteady velocity is observed to decompose with time so that the steady state 
velocity is reached. The effect of the ramped pressure gradient is that the motion of the fluid in the channel is 
slower with ramped pressure gradient compared to the motion of the fluid with constant pressure gradient. 

 
CASE II: Non homogenous slip boundary condition. 
 

We present the velocity profiles of the flow of an incompressible viscous fluid assuming a ramped pressure 
gradient as well as non-homogenous slip coefficients represented by the situation when 1β  is different from 2β . 

 

 
 

Fig.5. Velocity profile for different values of 1β , corresponding to ramped pressure gradient. 
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Fig.6. Velocity profile for different values of 1β , corresponding to constant pressure gradient. 
 

 
 

Fig.7. Velocity profile for different values of 2β , corresponding to ramped pressure gradient. 
 

 
 

Fig.8. Velocity profile for different values of 2β , corresponding to constant pressure gradient. 
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Fig.9. Velocity profile for different values of T, corresponding to constant and ramped pressure gradient. 
 

 
 

Fig.10. Velocity profile for different values of Re  corresponding to constant and ramped pressure gradient. 
 

Figures 5-8 are the velocity profiles for different values of the slip parameters ( )1β  and ( )2β , 
representing the non-homogenous slip boundary condition. It is noticed that a increase in the slip parameter 
amplifies n the flow velocity for both the constant and the ramped pressure gradient. The velocity in the case 
of a ramped pressure gradient is noticed to be slow compared to the constant pressure gradient. Figure 9 is 
the velocity profile for different values of time, it is observed that the magnitude of velocity rises with time, 
also an increase in time decomposes the transitory velocity and then the steady state velocity is reached. 
Figure 10 represents the velocity profile for different values of ( )Re , for both the constant and ramped 
pressure gradient. it is noticed that a rise in ( )Re  which indicates mass injection at the bottom plate, results 
in a lower magnitude of the velocity in both cases, this happens due to the lower speed up rate of the fluid in 
the flow direction by the pressure gradient for a high level of the Reynolds number. Based on this inference 
the velocity equation is non-dimensionalized by velocity dependent on the pressure gradient.  
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Table 1. Skin friction coefficient at Y 0= , and Y 1=  for different values of T  and Re for homogenous and 
non-homogenous slip boundary conditions. 

 
Skin friction at Y 0=  Skin friction at Y 1=  

 
T  

 
Re 

 
Homogenous 

slip  
. ,

.
0

1 2

T 0 1
0 2

=
β = β =

 

Non- 
homogenous slip 

. ,0T 0 1=
. ,
.

1

2

0 2
0 01

β =
β =

 
Homogenous 

slip 
. ,

.
0

1 2

T 0 1
0 2

=
β = β =

 

Non- 
homogenous slip 

. ,0T 0 1=  
. ,
.

1

2

0 2
0 01

β =
β =

 

 
.0 2   

.2 0  .0 0345  .0 0342 .  0 0460− .  0 0819−
   

.4 0  .0 0288  .0 0287 .  0 0500− .  0 1011−
   

.6 0  .0 0239  .0 0239 .  0 0520− .  0 1187−
   

.8 0  .0 0200  .0 0200 .  0 0521− .  0 1333−
   

.10 0  .0 0170  .0 0170 .  0 0508− .  0 1441−
 

.0 4   
.2 0  .0 0958  .0 0926 .  0 1382− .0 2226−

   
.4 0  .0 0731  .0 0722 .  0 1453− .  0 2724−

   
.6 0  .0 0564  0.0562 .  0 1423− .  0 3082−

   
.8 0  .0 0449  .0 0449 .  0 1338− .  0 3306−

   
.10 0  .0 0370  .0 0370 .  0 1239− .0 3437−

Steady 
state  

.2 0  .0 3563  .0 3256 .  0 5616− .0 7889−
   

.4 0  .0 2357  .0 2286 .  0 5294− .0 9176−
   

.6 0  .0 1651  .0 1639 .  0 4696− .0 9744−
   

.8 0  .0 1248  .0 1246 .  0 4134− .0 9952−
   

.10 0  .0 1000  .0 1000 .  0 3667− .  1 0001−
 
Table 1 shows the skin frictions at the top and bottom plates for both homogenous and non-

homogenous slip boundary conditions. It is noticed that the skin friction increases as the time increase for the 
bottom plate for both homogenous and non-homogenous slip boundary conditions. However, the skin 
friction has been observed to decrease as the time increases at the top plate for both homogenous and non-
homogenous slip boundary condition. In addition, the skin friction has been noticed to decrease as ( )Re  
increases at the bottom plate. This is due to presence of mass injection, reducing the skin friction at the 
bottom plate for both homogenous and non-homogenous boundary conditions. While at the top plate the skin 
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friction is noticed to grow in the case of the homogenous slip boundary condition with growing ( )Re  and the 
skin friction lessens with improving ( )Re  for the non-homogenous slip boundary condition. 
 
Table 2. Verifying the current result with the work of Fang [2] for the flow velocity. 

 
Velocity profile 

T  Y  
Current result at 
. , Re ,  0 1 2T 0 1 5 0= = β = β =  Fang (2004) 

.0 2 .0 2  .0 0351 .0 0367   .0 4  .0 0646 .0 0686   .0 6  .0 0831 .0 0897   .0 8  .0 0761 .0 0828   10  .0 0000 .0 0000  

.0 4 .0 2  .0 0376 .0 0376   .0 4  .0 0711 .0 0712   .0 6  .0 0937 .0 0939  
 .0 8  .0 0868 .0 0871  
 10  .0 0000 .0 0000  

Steady state .0 2  .0 0377 .0 0377  
 .0 4  .0 0713 .0 0713  
 .0 6  .0 0941 .0 0941  
 .0 8  .0 0873 .0 0873  
 10  .0 0000 .0 0000  

 
Table 3. Verifying the current result with the work of Fang [2] for the skin frictions. 

 
Skin friction at Y 1=  Skin friction at Y 0=  

T Re 
Current result at 

.0T 0 1= ,  

1 2 0β = β =  

Fang 
(2004) T Re 

Current result at 
.0T 0 1= , 

1 2 0β = β =  

Fang  
(2004) 

.0 2  .2 0  .0 5292−  .0 5859− 0.2 .2 0 .0 2964  .0 3175 .4 0  .0 6532−  .0 7150− .4 0 .0 2155  .0 2241 .6 0  .0 7573−  .0 8091− .6 0 .0 1602  .0 1629 .8 0  .0 8323−  .0 8661− .8 0 .0 1238  .0 1245 .10 0  .0 8802−  .0 8979− .10 0 .0 0998  .0 1000
.0 3  .2 0  .0 6135−  .0 6327− .0 3 .2 0 .0 3277  .0 3347 .4 0  .0 7397−  .0 7553− .4 0 .0 2274  .0 2295 .6 0  .0 8238−  .0 8318− .6 0 .0 1636  .0 1640 .8 0  .0 8721−  .0 8747− .8 0 .0 1246  .0 1247 .10 0  .0 8995−  .0 9001− .10 0 .0 1000  .0 1000

Steady 
state .2 0  .0 6566−  .0 6566− Steady 

state .2 0 .0 3435  .0 3435 .4 0  .0 7687−  .0 7687− .4 0 .0 2314  .0 2314 .6 0  . .0 8359− . .0 8359− .6 0 .0 1642  .0 1642 .8 0  .0 8754−  .0 8754− .8 0 .0 1247  .0 1247 .10 0  .0 9001−  .0 9001− .10 0 .0 1000  .0 1000
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4. Conclusion 
 
 A study on the influence of velocity slip on the transitory flow formation of an incompressible fluid in a 
porous channel assuming a ramped pressure gradient along the flow direction has been conducted. The mathematical 
equation governing the flow was modelled and solved semi-analytically by the Laplace transformation technique. 
The numerical results were computed by MATLAB software to generate graphs and tables and the effects of the 
important parameters governing the flow were discussed. It was found that an increase in the slip parameter increases 
the flow velocity for both the ramped pressure gradient and constant pressure gradient.  
 
Appendix 
 
  ( ) ( ) ( )Recosh cosh sinh1 2 2Q

2
 = δ + β δ + β δ δ 
 

, 
 

  ( ) ( ) ( )Resinh sinh cosh2 2 2Q
2

 = δ + β δ + β δ δ 
 

,     ( ) Re
3

F s
Q exp

s 2
 = − 
 

, 
 

  Re
4 1Q 1

2
 = − β  
 

,      5 1Q = β δ ,     ( )
6

F s
Q

s
= , 

 

  32 2
1

1 1

QC QC
Q Q

 
= − − 

 
,     3 4 6 1

2
5 1 2 4

Q Q Q QC
Q Q Q Q
 −= −  + 

,      

 
  Re1 1P 1= − β ,     ( )( )Re Re  2 2P exp 1= + β ,      3 1 2P P P= − ,     4 1 2P = β + β , 
 

  Re
Re1 2 1 1
1D D P= + − β ,      

Re
4

2
3

1 PD
P
+=  

 
Nomenclature  
 
 u  – dimensional velocity component along the x  axis ( )/m s  

 h  – channel width ( )m  

 y  – dimensional coordinate in y – direction 
 Y  – dimensionless coordinate in y −  direction 
 t  – dimensional time ( )s  

 T  – dimensionless time ( )s  

 s  – Laplace parameter 
 U  – dimensionless velocity in the Laplace domain ( )/m s  

 U  – dimensionless velocity in time domain ( )/m s  

 0U  – dimensionless reference velocity ( )/m s  

 dp
dx

 – dimensional ramped pressure gradient ( )/ 2N m  

 ( )F T  – dimensionless ramped pressure gradient ( )/ 2N m  

 Re – Reynolds number 

 μ  – dynamic viscosity ( )1 1kgm s− −  
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 v  – kinematic viscosity ( )2 1m s−  

 wv  – suction/injection velocity ( )/m s  

 ρ  – density of the fluid ( )3kgm−  

 ' ',1 2β β  – dimensional slip coefficients 
 , ,1 2β β β  – dimensionless slip coefficients 
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