PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to investigate the possibility of intercalation of gentamicin and neomycin in montmorillonite (MMT) nanofillers, as well as to study the in vitro antimicrobial properties of nanocomposite films containing a small amount of thus obtained nanofillers. Methods: The polylactide matrix (PLA) nanocomposite films with drug-intercalated montmorillonite fillers were obtained by casting after intercalation of drugs in aqueous solutions. The efficiency of intercalation has been confirmed by X-ray diffraction (XRD) and Zeta potential measurements. The materials were studied for surface wettability, roughness and mechanical properties during 6 weeks of incubation in phosphate buffer saline, and their bactericidal activity was tested against Escherichia coli bacteria before and after 6 weeks of incubation in distilled water at 37 C. The presence of antibiotics during the incubation was monitored by conductivity and pH measurements. Results: The results indicate that nanocomposite polylactide films with montmorillonite filler intercalated with gentamicin and neomycin tend to degrade faster that their counterparts with non-intercalated fillers, which affects their mechanical properties. However, drug intercalation provided an antibacterial activity, which was confirmed by the presence of zones inhibiting the growth of Gram-negative bacteria for both antibiotics. It was also confirmed that the interaction of antibiotics with clay and polymer matrix did not adversely affect this bactericidal effect. Conclusions: Montmorillonite can be successfully intercalated with both gentamicin and neomycin, and then used as active filler for polylactide films having very good antibacterial properties, therefore their use in biomedical applications can be significantly expanded.
Rocznik
Strony
83--92
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, ul. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • The University Hospital in Krakow, Division of Microbiology, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Kraków, Poland
Bibliografia
  • [1] AZHAR F.F., OLAD A., A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginatechitosan/montmorillonite nanocomposite systems, Appl. Clay Sci., 2014, 101, 288–296.
  • [2] BARTKOWIAK-JOWSA M., BĘDZIŃSKI R., SZARANIEC B., CHŁOPEK J., Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers, Acta Bioeng. Biomech., 2011, 13, 21–28.
  • [3] CYPES S.H., SALTZMAN W.M., GIANNELIS E.P., Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties, J. Contr. Release, 2003, 90, 163–169.
  • [4] DONG W., ZOU B., YAN Y., MA P., CHEN M., Effect of chainextenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Int. J. Molec. Sci., 2013, 14, 20189–20203.
  • [5] DZIADKOWIEC J., MANSA R., QUINTELA A., ROCHA F., DETELLIER C., Preparation, characterization and application in controlled release of ibuprofen-loaded guar gum/montmorillonite bionanocomposites, Appl. Clay Sci., 2017, 135, 52–63.
  • [6] FEJER I., KATA M., EROS I., DEKANY I., Interaction of monovalent cationic drugs with montmorillonite, Colloid Polym. Sci., 2002, 280, 372–379.
  • [7] FENG S.S., MEI L., ANITHA P., GAN C.W., ZHOU W., Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel, Biomater., 2009, 30, 3297–3306.
  • [8] GOLUBEVA O.Y., PAVLOVA S.V., Adsorption of thiamine hydrochloride (Vitamin B1) by synthetic layered silicates with a montmorillonite structure, Glass Phys. Chemist., 2014, 40, 375–379.
  • [9] JAFARBEGLOU M., ABDOUSS M., SHOUSHTARI A.M., JAFARBEGLOU M., Clay nanocomposites as engineering drug delivery systems, RSC Adv., 2016, 55, 50002–50016.
  • [10] JO B.W., PARK S.K., KIM D.K., Mechanical properties of nano-MMT- reinforced polymer composite and polymer concrete, Constr. Build. Mater., 2008, 22 (1), 14–20.
  • [11] KANT A., DATTA M., Extended release of metronidazole using montmorillonite as drug delivery vehicle, J. Indian Chem. Soc., 2016, 93, 805–807.
  • [12] KOBIELARZ M., GAZIŃSKA M., TOMANIK M., STĘPAK B., SZUSTAKIEWICZ K., FILIPIAK J., ANTOŃCZAK A., PEZOWICZ C., Physicochemical and mechanical properties of CO2 laser- -modified biodegradable polymers for medical applications, Polym. Degrad. Stabil., 2019, 165, 182–195.
  • [13] MCLAREN A.D., PETERSON G.H., Montmorillonite as a caliper for the size protein molecules, Nature, 1961, 192, 960–961.
  • [14] MENG N., ZHOU N., ZHANG S., SHEN J., Synthesis and antimicrobial activities of polymer/montmorillonite-chlorhexidine acetate nanocomposite films, Appl. Clay Sci., 2009, 42, 667–670.
  • [15] MIOTKE M., STRANKOWSKA J., KWELA J., STRANKOWSKI M., PISZCZYK L., JÓZEFOWICZ M., GAZDA M., Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels, Eur. Phys. J. Plus, 2017, 132, 401–416.
  • [16] NUNES C.D., VAZ P.D., FERNANDES A.C., FERREIRA P., Loading and delivery of sertraline using inorganic micro- and mesoporous materials, Eur. J. Pharm. Biopharm., 2007, 66, 357–365.
  • [17] PONGJANYAKUL T., PRIPREM A., PUTTIPIPATKHACHORN S., Investigation of novel alginate-magnesium aluminum silicate microcomposite films for modified-release tablets, J. Contr. Release, 2005, 107, 343–356.
  • [18] RAPACZ-KMITA A., STODOLAK-ZYCH E., BUĆKO M.M., MIKOŁAJCZYK M., DUDEK P., TRYBUS M., Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material, Mater. Sci. Eng. C, 2017, 70, 471–478.
  • [19] RAPACZ-KMITA A., GAJEK M., DUDEK M., STODOLAK-ZYCH E., SZARANIEC B., LACH R., Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation, J. Therm. Anal. Calorim., 2017, 127, 389–398.
  • [20] RAPACZ-KMITA A., PIERCHAŁA M.K., TOMAS-TRYBUŚ A., SZARANIEC B., KARWOT J., The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films, Acta Bioeng. Biomech., 2017, 19, 25–33.
  • [21] RAPACZ-KMITA A., STODOLAK-ZYCH E., SZARANIEC B., GAJEK M., DUDEK P., Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites, Mater. Lett., 2015, 146, 73–76.
  • [22] SALAHUDDIN N., KENAWY E.-R., ABDEEN R., Polyoxypropylene-montmorillonite nanocomposites for drug delivery vehicles: Preparation and characterization, J. Appl. Polym. Sci., 2012, 125, 157–166.
  • [23] UDDIN F., Montmorillonite: An introduction to properties and utilization, [in:] Current Topics in the Utilization of Clay in Industrial and Medical Applications, M. Zoveidavianpoor (Ed.), Intech Open, London, 2018, 4–23.
  • [24] YUAN Q., SHAH J., HEIN S., MISRA R., Controlled and extended drug release behavior of chitosan-based nanoparticle carrier, Acta Biomater., 2010, 6, 1140–1148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-765a222e-03c1-4fc2-a30d-089ccb4d3d13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.