Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Public transportation provides its services to both urban centers and neighboring areas in the immediate vicinity of the city. The problem of urban transportation is evident, the number of people willing to use public transportation has decreased. Therefore, there is a need to delve into the issue and conduct an analysis of the demand for urban transportation in Poland in 2000-2030, this will allow us to assess in what direction urban transportation is heading, whether there is an increase in the number of people using it, or whether there is a downward trend (Zielińska 2018). Based on CSO statistics from 2009-2020 for the analysis of demand for public transportation in Poland, a forecast of people using public transportation was conducted using Statistica software for 2021-2030. Due to the situation with the COVID-19 pandemic, the study was conducted in 2 ways – with and without 2020. Public transportation will make less and less profit and even losses for the next few years through rising gasoline and energy prices. Virtually in each of the provinces, and likewise throughout Poland, a decline in the number of people willing to use public transportation is evident. conclusions. On the basis of the surveys carried out, there is a general trend that shows the current state of public transport. In most of the cases studied, a similar conclusion emerges, namely that public transport will experience a marked decline in the coming years. The number of people who want to use public transport will decrease, mainly due to the COVID-19 pandemic and people’s fears for their own safety.
Słowa kluczowe
Rocznik
Tom
Strony
161--184
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
- Akademia Nauk Stosowanych im. Stanisława Staszica, ul. Podchorążych 10, 64-920 Piła
autor
Bibliografia
- AL-MADANI H. 2018. Global road fatality trends’estimations based on country-wise microlevel data. Accident Analysis & Prevention, 111: 297-310. https://doi.org/10.1016/j.aap.2017.11.035
- BLOOMFIELD P. 1973. An exponential model in the spectrum of a scalar time series. Biometrics, 60: 217–226. https://www.jstor.org/stable/2334533 (access 19.08.2022).
- CHUDY-LASKOWSKA K. PISULA T. 2015. Forecasting the number of road accidents in Podkarpacie. Logistics, 4.
- CHUDY-LASKOWSKA K., PISULA T. 2014. Forecast of the number of road accidents in Poland. Logistics, 6.
- FISZEDER P. 2009. GARCH class models in empirical financial research. Scientific Publishers of the Nicolaus Copernicus University, Toruń.
- GORZELAŃCZYK P. 2022. Change in the Mobility of Polish Residents during the COVID-19 Pandemic. Communications – Scientific Letters of the University of Zilina, 24(3): A100-111. https://doi.org/10.26552/com.C.2022.3.A100-A111
- GORZELAŃCZYK P., JURKOVIČ M., KALINA T., MOHANTY M. 2022. Forecasting the road accident rate and the impact of the COVID-19 on its frequency in the Polish provinces. Communications, 24(4): A216-A231. https://doi.org/10.26552/com.C.2022.4.A216-A231
- GORZELAŃCZYK P., KOCZOROWSKI A. 2018a. Analysis of transport fleet maintenance costs on the example of the Municipal Transport Company, Buses. Technology, Operation, Transport Systems, 6.
- GORZELAŃCZYK P., KOCZOROWSKI A. 2018b. Optimization of transport fleet maintenance costs on the example of the Municipal Transport Company, Buses. Technology, Operation, Transport Systems, 6.
- GREGORCZYK A., SWARCEWICZ M. 2012. Analysis of variance in a repeated measures system to determine the effects of factors affecting linuron residues in soil. Polish Journal of Agronomy, 11: 15-20. https://www.iung.pl/PJA/wydane/11/PJA11_3.pdf
- Introduction to exponential smoothing. 2022. Simple. Blog. https://limoserviceinneworleans.com/ (access 19.08.2022).
- KARLAFTIS M., VLAHOGIANNI E. 2009. Memory properties and fractional integration in transportation time-series. Transportation Research. Part C: Emerging Technologies, 17: 444–453.
- KUMAR S., VISWANADHAM V., BHARATHI B. 2019. Analysis of road accident. IOP Conference Series Materials Science and Engineering, 590(1): 012029. https://doi.org/10.1088/1757-899X/590/1/012029
- LI L, SHRESTHA S., HU G. 2017. Analysis of road traffic fatal accidents using data mining techniques. IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), p. 363-370. https://doi.org/10.1109/SERA.2017.7965753
- MAMCZUR M. 2020. Jak działa regresja liniowa? I czy warto ją stosować? Mirosław Mamczur. Blog o data science, AI, uczeniu maszynowym i wizualizacji danych. https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (access 19.08.2022).
- MARCINKOWSKA J. 2015. Statistical methods and data mining in assessing the occurrence of syncope in the group of narrow-QRS tachycardia (AVNRT and AVRT). Medical University of Karol Marcinkowski in Poznań. Poznań. http://www.wbc.poznan.pl/Content/373785/index.pdf
- MCILROY R.C., PLANT K.A., HOQUE M.S., WU J., KOKWARO G.O., NAM V.H., STANTON N.A. 2019. Who is responsible for global road safety? A cross-cultural comparison ofactor maps. Accident Analysis & Prevention, 122: 8–18. https://doi.org/10.1016/j.aap.2018.09.011
- MONEDEROA B.D., GIL-ALANAA L.A., MARTÍNEZAA M.C.V. 2021. Road accidents in Spain: Are they persistent? IATSS Research, 45(3): 317-325. https://doi.org/10.1016/j.iatssr.2021.01.002
- MUĆK J. Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. http://web.sgh.waw.pl/~jmuck/Ekonometria/EkonometriaPrezentacja5.pdf (access 19.08.2022).
- PERCZAK G., FISZEDER P. 2014. GARCH model – using additional information on minimum and maximum prices. Bank and Credit, 2.
- PIŁATOWSKA M. 2012. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics, 4(38).
- RABIEJ M. 2012. Statystyka z programem Statistica. Helion, Gliwice.
- SEBEGO M., NAUMANN R.B., RUDD R.A., VOETSCH K., DELLINGER A.M., NDLOVU C. 2008. The impact of alcohol and road traffic policies on crash rates in Botswana, 2004–2011: A time-series analysis. Accident Analysis & Prevention, 70: 33-39. https://doi.org/10.1016/j.aap.2014.02.017
- SHETTY P., SACHIN P.C., KASHYAP V.K., MADI V. 2017. Analysis of road accidents using data mining techniques. International Research Journal of Engineering and Technology, 4.
- Techniki zgłębiania danych (data mining). StatSoft Polska. https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstdatmin.html (access 19.08.2022).
- Top Advantages and Disadvantages of Hadoop 3. DataFlair. https://data-flair.training/blogs/advantages-and-disadvantages-of-hadoop/ (access 19.08.2022).
- Transport pasażerów. 2021. Główny Urząd Statystyczny. Bank Danych Lokalnych. https://bdl.stat.gov.pl/bdl/dane/podgrup/tablica (access 19.08.2022).
- WÓJCIK A. 2014. Modele wektorowo-autoregresyjne jako odpowiedź na krytykę strukturalnych wielorównaniowych modeli ekonometrycznych. Studia Ekonomiczne, 193: 112-128.
- WROBEL M.S. 2017. Application of neural fuzzy systems in chemistry. PhD thesis. Uniwersytet Śląski, Katowice.
- ZIELIŃSKA E. 2018. Analysis of demand for urban transport in Poland. Autobusy: Technika, Eksploatacja, Systemy Transportowe, 6: 981-986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7647936d-8010-468c-ade1-4d02f4c7fd61