PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correction Procedure of Wave Signals for a Viscoelastic Split Hopkinson Pressure Bar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A polymeric split Hopkinson pressure bar technique (SHPB) is preferred for testing materials with low mechanical impedance. However, the use of polymeric bars requires additional analysis for data reduction, temperature complications and additional restrictions compared with traditional metallic pressure bars. A viscoelastic material, such as PMMA, exhibits both wave attenuation and wave dispersion. When a wave travels through a polymer bar, the wave amplitude decreases due to attenuation and the wave shape becomes distorted. Therefore, signals measured at given positions on a viscoelastic bar do not represent the pulse at another position along the pressure bar without complex corrections. This paper is concerned with the problem of correction of dispersion and attenuation of waves in the viscoelastic SHPB. It has been demonstrated that the Fast Fourier Transform (FFT) spectral analysis method used to reconstruct wave profiles on the measured signals which are being distorted by wave attenuation and dispersion effects is valid and allows for obtaining satisfactory results for tire rubber.
Twórcy
  • Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, 2 Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Grujicic M., B. Pandurangan, B. D’entremont, 2012. „The role of adhesive in the ballistic/structural performance of ceramic/polymer-matrix composite hybrid armor”. Materials and Design 41 : 380-393.
  • [2] Grujicic M., B. Pandurangana, T. Hea, B.A. Cheesemanb, C.F.Yenb, C.L. Randow. 2010. „Computational investigation of impact energy absorption capability of polyuria coatings via deformation-induced glass transition”. Materials Science and Engineering A 527 : 7741-7751.
  • [3] Nilakantan Gaurav, Steven Nutt. 2014. „Effects of clamping design on the ballistic impact response of soft body armor”. Composite Structures 108 :137-150.
  • [4] Roland C.M., D. Fragiadakis, R.M. Gamache. 2010. „Elastomer-steel laminate armor”. Composite Structures 92 : 1059-1064.
  • [5] Ackland Kathryn, Christopher Anderson, Tuan Duc Ngo. 2013. „Deformation of polyurea-coated steel plates under localised blast loading”. International Journal of Impact Engineering 51 : 13-22.
  • [6] Pouriayevali Habib, Y.B. Guo, V.P.W. Shim. 2012. „A constitutive description of elastomer behaviour at high strain rates - A straindependent relaxation time approach”. International Journal of Impact Engineering 47 : 71-78.
  • [7] Chen Weinong, Bo Song. 2011. Split Hopkinson (Kolsky) Bar, Design, Testing and Applications, Springer.
  • [8] Kolsky Herbert. 1949. „An investigation of the mechanical properties of materials at very high strain rates of loading”. Proc. Phys. Soc., B62 : 676-700.
  • [9] Gray III George Rusty. 2000. ASM Handbook: Mechanical Testing and Evaluation,. In Materials Park: (ed. Kuhn H., D. Medlin D.), 939-1270. ASM International.
  • [10] Shima Jongmin, Dirk Mohr. 2009. „Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates”. International Journal of Impact Engineering 36 : 1116-1127.
  • [11] Liua Jiagui, Dominique Saletti, Stéphane Pattofattoc, Han Zhaoa. 2014. „Impact testing of polymeric foam using Hopkinson bars and digital image analysis”. Polymer Testing 36 : 101-109.
  • [12] Trexler M.M., A.M. Lennon, A.C. Wickwire, T.P. Harrigan, Q.T. Luong, J.L. Graham, A.J. Maisano, J.C. Roberts, A.C. Merkle. 2011. „Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading”. Journal of the Mechanical Behavior of Biomedical Materials 4(8) : 1920-1928.
  • [13] Chen Weinong, F. Lu, B. Zhou. 2000. „A Quartz-crystal-embedded Split Hopkinson Pressure Bar for Soft Materials”. Exp. Mech. 40 (1) : 1-6.
  • [14] Chen Weinong, B. Zhang, M.J. Forrestal. 1999. „A split Hopkinson bar technique for low-impedance materials”. Exp. Mech. 39 (2) : 81-85.
  • [15] Zhao Han, Gérard Gary, Janusz Roman Klepaczko. 1997. „On the use of a viscoelastic split Hopkinson pressure bar” International Journal of Impact Engineering 19 (4) : 319-330.
  • [16] Casem Daniel T., William L. Fourney, Peter Chang. 2003. „A Polymeric Split Hopkinson Pressure Bar Instrumented with Velocity Gages”. Experimental Mechanics 43 (4) : 420-427.
  • [17] Chen Weinong, B. Zhang, M.J. Forrestal. 1999. „A Split Hopkinson Bar Technique for Low-impedance Materials” Experimental Mechanics 39 (2) : 81-85.
  • [18] Wang Lili, K. Labibes, Z. Azari, G. Pluvinage. 1994. „Generalization of Split Hopkinson Bar Technique to Use Viscoelastic Bars”. Int. J. Impact Eng. 15 : 669-686.
  • [19] Bacon C. 1998. „An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar”. Experimental Mechanics 38 (4) : 242-249.
  • [20] Cheng Z.Q., J.R. Crandall, W.D. Pilkey. 1998. „Wave dispersion ant attenuation in viscoelastic split Hopkinson pressure bar”. Shock and Vibration 5 : 307-315.
  • [21] Doyle James F. 1989. Wave Propagation in Structures - An FFT-Based Spectral Analysis Methodology. New York: Springer-Verlag.
  • [22] Zhao Han, Gérard Gary. 1995. „A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques”. J. Mech. Phys. Solids vol. 43 (8) : 1335-1348.
  • [23] Sana Hafiz, Ullah Butt, Pu Xue. 2014. „Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials”. International Journal of Impact Engineering 74 : 83-91.
  • [24] Song Bo, Weinong Chen. 2003. „One-dimensional dynamic compressive behaviour of EPDM rubber”. Journal of Engineering Materials and Technology 125 : 294-301.
Uwagi
EN
This paper is based on the work presented at the 8th Symposium of Lightweight Armour Group LWAG 2014, Ryn, Poland, September 15-18, 2014.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-764655bf-351b-4f95-9287-c2f17f7b076f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.