Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines a novel use of the Jacobi elliptic function expansion method to solve the Shynaray-IIA equation, a significant nonlinear partial differential equation that arises in optical fiber, plasma physics, surface symmetry geometry, and many other mathematical physics domains. This kind of solution has never been attained in research prior to this study. Numerous properties of a particular class of solutions, called the Jacobi elliptic functions, make them useful for the analytical solution of a wide range of nonlinear problems. Using this powerful method, we derive a set of exact solutions for the Shynaray-IIA equation, shedding light on its complex dynamics and behaviour. The proposed method is shown to be highly effective in obtaining exact solutions in terms of Jacobi elliptic functions, such as dark, bright, periodic, dark-bright, dark-periodic, bright periodic, singular, and other various types of solitons. Furthermore, a detailed analysis is conducted on the convergence and accuracy of the obtained solutions. The outcomes of this study extend the applicability of the Jacobi elliptic function approach to a novel class of non-linear models and provide valuable insights into the dynamics of Shynaray-IIA equation. This study advances the creation of efficient mathematical instruments for resolving intricate nonlinear phenomena across a range of scientific fields.
Czasopismo
Rocznik
Tom
Strony
136--147
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, P. R., China
autor
- Department of Mathematics, University of Management and Technology, Lahore, Pakistan
- Department of Mathematics, College of Science, University of Duhok, Duhok, Iraq
autor
- School of Mathematical Sciences, Jiangsu University, Zhenjiang, 212013, China
autor
- Ratbay Myrzakulov Eurasian International Centre for Theoreticals Physics, Astana, Kazakhstan
autor
- Ratbay Myrzakulov Eurasian International Centre for Theoreticals Physics, Astana, Kazakhstan
Bibliografia
- 6. Wazwaz AM. Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method.Applied Mathe-matics and Computation. 2006;182(1):283-300.
- 7. Seadawy AR. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equa-tion for dispersive shallow-water waves. Eur. Phys. J. Plus. 2017;132:29. https://doi.org/10.1140/epjp/i2017-11313-4.
- 8. Akram U, Seadawy AR, Rizvi STR, Younis M, Althobaiti S, Sayed S. Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves. Results in Physics. 2021;20:103725. https://doi.org/10.1016/j.rinp.2020.103725
- 9. Rizvi STR, Kashif A, Marwa A. Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik. 2020;204:164181. https://doi.org/10.1016/j.ijleo.2020.164181
- 10. Seadawy AR. New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Computers& Mathematics with Applications. 2011; 62(10):2011;3741-3755. https://doi.org/10.1016/j.camwa.2011.09.023
- 11. Asghar A, Seadawy AR, Dianchen L. Soliton solutions of the non-linear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik. 2017; 145;79-88. https://doi.org/10.1016/j.ijleo.2017.07.016
- 12. Arshad M, Seadawy AR, Dianchen L. Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrö-dinger equation and its stability. Optik. 2017;138;40-49. https://doi.org/10.1016/j.ijleo.2017.03.005
- 13. Arnous AH, Seadawy AR, Alqahtani RT, Biswas A. Optical solitons with complex Ginzburg–Landau equation by modified simple equa-tion method. Optik. 2017;144:475-480. https://doi.org/10.1016/j.ijleo.2017.07.013
- 14. Seadawy AR, El-Rashidy K. Traveling wave solutions for some coupled nonlinear evolution equations,Mathematical and Computer Modelling. 2013;57(5-6):1371-1379. https://doi.org/10.1016/j.mcm.2012.11.026
- 15. Younas U, Younis M, Seadawy AR, Rizvi STR, Althobaiti S, Sayed S. Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results in Physics. 2021,20;103766. https://doi.org/10.1016/j.rinp.2020.103766
- 16. Bhrawy AH, Abdelkawy MA, Kumar S, Biswas A. Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type. Rom. J. Phys. 2013; 58(7-8):729-748.
- 17. Ebadi G, Fard NY, Bhrawy AH, Kumar S, Triki H, Yildirim A, Biswas A. Solitons and other solutions to the (3+ 1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonline-arity. Rom. Rep. Phys. 2013; 65(1):27-62.
- 18. Iqbal MA, Wang Y, Miah MM, Osman MS. Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solu-tions. Fractal and Fractional. 2021; 6(1):4.
- 19. Ali KK, Wazwaz AM, Osman MS. Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik. 2020; 208:164132.
- 20. Akinyemi L, Houwe A, Abbagari S, Wazwaz AM, Alshehri HM, Osman MS. Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik. 2023; 288: 171202. https://doi.org/10.1016/j.ijleo.2023.171202
- 21. Mani Rajan MS, Saravana Veni S, Wazwaz AM. Self-steepening nature and nonlinearity management of optical solitons with the in-fluence of generalized external potentials. Opt Quant Electron. 2023; 55:703. https://doi.org/10.1007/s11082-023-04912-8
- 22. Jafari H, Tajadodi H, Baleanu D. Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. Journal of Computational and Nonlinear Dynamics. 2014;9(2): 021019.
- 23. Kumar S, Malik S, Rezazadeh H, Akinyemi L. The integrable Boussinesq equation and it’s breather, lump and soliton solu-tions. Nonlinear Dynamics; 2022;1-14.
- 24. Kumar S, Kumar A., Samet B, Gómez-Aguilar JF, Osman MS. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos, Solitons & Fractals 2020; 141: 110321.
- 25. Khan MI, Asghar S, Sabi’u J. Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equa-tion. Optical and Quantum Electronics. 2022; 54: 734.
- 26. Osman MS. One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dynamics. 2019; 96(2):1491-1496.
- 27. Osman MS, Rezazadeh H., Eslami M. Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. Nonlinear Engineering. 2016; 8(1):559-567.
- 28. Alquran M, Jarrah A. Jacobi elliptic function solutions for a two-mode KdV equation. J King Saud Univ Sci. 2019;31:485–9. https://doi.org/10.1016/j.jksus.2017.06.010
- 29. Jaradat HM, Syam M, Alquran M. A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions. Non-linear Dyn. 2017;90:371–7. https://doi.org/10.1007/s11071-017-3668-x
- 30. Alquran M, Jaradat HM, Syam MI. A modified approach for a relia-ble study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation. Nonlinear Dyn. 2018;91:1619–26. https://doi.org/10.1007/s11071-017-3968-1
- 31. Jaradat HM, Awawdeh F, Al-Shara S, Alquran M, Momani S. Con-trollable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media. Rom. J. Phys. 2015; 60:324–43.
- 32. Syam M, Jaradat HM, Alquran M. A study on the two-mode cou-pled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dyn. 2017; 90:1363–71. https://doi.org/10.1007/s11071-017-3732-6
- 33. Alquran M, Jaradat HM, Al-Shara S, Awawdeh F. A new simplified bilinear method for the N-soliton solutions for a generalized F mKdV equation with time-dependent variable coefficients. Int J Nonlinear Sci Numer Simul. 2015;16:259–69. https://doi.org/10.1515/ijnsns-2014-0023
- 34. Rezazadeh H, Vahidi J, Zafar A, Bekir A. The functional variable method to find new exact solutions of the nonlinear evolution equa-tions with dual-power-law nonlinearity. Int J Nonlinear Sci Numer Simul. 2020; 21:249– 57. https://doi.org/10.1515/ijnsns-2019-0064
- 35. Yépez-Martínez H, Gómez-Aguilar JF. Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using theAtangana’s conformable derivative. WavesRan Comp Med. 2019;29:678–93. https://doi.org/10.1080/17455030.2018.1464233
- 36. Yépez-Martínez H, Gómez-Aguilar JF, Baleanu D. Beta-derivative and sub equation method applied to the optical solitons in medium with parabolic law nonlinearity and high order dispersion. Optik. 2018;155:357– 65. https://doi.org/10.1016/j.ijleo.2017.10.104
- 37. Yépez-Martínez H, Gómez-Aguilar JF. M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers. Optical Quant Electron. 2019; 51:31. https://doi.org/10.1007/s11082-018-1740-5
- 38. Akinyemi L. Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solutions. Optik-International Journal for Light and Electron Optics. 2021;243;167477.
- 39. Kumar S, Mann N, Kharbanda H, Inc M. Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) system. Analysis and Mathematical Physics. 2023;13(3):40.
- 40. Kumar S, Mann N. A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex cou-pled Schrödinger–Boussinesq equations. Optical and Quantum Electronics. 2023;55(8):723.
- 41. Kumar S, Rani S, Mann N. Diverse analytical wave solutions and dynamical behaviors of the new (2+1)-dimensional Sakovich equa-tion emerging in fluid dynamics. The European Physical Journal Plus. 2022;137(11):1226.
- 42. Kumar S, Niwas M, Mann N. Abundant analytical closed-form solutions and various solitonic wave forms to the ZK-BBM and GZK-BBM equations in fluids and plasma physics. Partial Differen-tial Equations in Applied Mathematics. 2021;4:100200.
- 43. Kumar S, Mann N. Abundant closed-form solutions of the (3+1)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. Journal of Ocean Engineering and Science; 2022.
- 44. Rani S, Kumar S, Mann N. On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+ 1)-dimensional complex modified Korteweg-de-Vries equation us-ing two integration mathematical methods. Optical and Quantum Electronics. 2023;55(8):731.
- 45. Nonlaopon K, Mann N, Kumar S, Rezaei S, Abdou MA. A variety of closed-form solutions, Painlevé analysis, and solitary wave profiles for modified KdV–Zakharov–Kuznetsov equation in (3+1)-dimensions. Results in Physics. 2022;36:105394.
Uwagi
Numeracja bibliografii od pozycji 6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-764643b0-351d-4cd1-953c-a80d085d8adc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.