Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The warm roll bonding technique was adopted to fabricate Aluminum–polyurethane–Aluminum (Al–PU–Al) composites. Glass whiskers or SiC particles were added to reinforce the inner layer. The main objective of the present study is to examine experimentally the main manufacturing parameters, including interface properties and layer thicknesses, both of which control the strength and integrity of Al–PU–Al composites. For this purpose, three different tests were performed, namely the peel test, the single lap shear test, and the small punch test (SPT). A numerical study was carried out to study the effect of each parameter on the bond, the mechanical behaviors, and fracture behaviors of Al–PU–Al composites using the extended finite element method. The present results indicate that there is a critical diameter of the unbonded circle (D) beyond which the interlayer bonding strength decreases markedly for both the peel and the single lap shear tests. The critical value of D/W equals 0.2 for the peel test and 0.3 for the single lap shear test, where W is the plate width. There is no clear relation between the interlayer bonding strength measured, either from the peel test, or the single lap shear test, and the ultimate load measured from SPT. The mechanical behavior of Al–PU–Al composites measured from SPT is marginally affected by the interfacial bonding strength between the layers. The presence of clearance (0.1 mm) between the SPT specimen and the fixture decreased its ultimate load by about 10% for the bonded specimen, and 30% for the unbonded specimen.
Czasopismo
Rocznik
Tom
Strony
324--334
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wykr.
Twórcy
autor
- Faculty of Engineering, Jazan University, 706, Jazan, Kingdom of Saudi Arabia
autor
- Department of Materials Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
autor
- Mechanical Design Department, Faculty of Engineering, Helwan University, Cairo 11718, Egypt
Bibliografia
- [1] Sokolova OA, Kühn M, Palkowski H. Deep drawing properties of lightweight steel/polymer/steel sandwich composites. Arch Civ Mech Eng. 2012;12(2):105–12. https:// doi. org/ 10. 1016/j. acme. 2012. 05. 001.
- [2] Harhash M, Gilbert RR, Hartmann S, Palkowski H. Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites-part 1: deep drawing. Compos Struct. 2018;202:1308–21. https:// doi. org/ 10. 1016/j. comps truct. 2018. 06. 066.
- [3] Harhash M, Gilbert RR, Hartmann S, Palkowski H. Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites-part 2: free bending. Compos Struct. 2020;232:111–421. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111421.
- [4] Andani MK, Daneshmanesh H, Jahromi SAJ. Investigation of the bonding strength of the stainless steel 316L/polyurethane/stainless steel 316L tri-layer composite produced by the warm rolling process. J Sandwich Struct Mater. 2020;22(3):728–42. https:// doi. org/ 10. 1177/ 10996 36218 770911.
- [5] Megahed M, Abd El-baky MA, Alsaeedy AM, Alshorbagy AE. Improvement of impact and water barrier properties of GLARE by incorporation of different types of nanoparticles. Fibers Polym. 2020;21:840–8. https:// doi. org/ 10. 1007/ s12221- 020- 9725-y.
- [6] Megahed M, Abd El-baky MA, Alsaeedy AM, Alshorbagy AE. An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Compos B. 2019;176:107–277. https:// doi. org/ 10. 1016/j. compo sitesb. 2019. 107277.
- [7] Gerstenberger C, Osiecki T, Kroll L, Scholz P, Seidlitz H. Processing and characterization of cathodic dip coated metal/composite-laminates. Arch Civ Mech Eng. 2016;16:467–72. https:// doi. org/ 10. 1016/j. acme. 2016. 03. 001.
- [8] Abd El-Baky MA, et al. Fabrication of cost effective fiber metal laminates based on jute and glass fabrics for enhanced mechanical properties. J Nat Fibers. 2020. https:// doi. org/ 10. 1080/ 15440 478. 2020. 17395 94.
- [9] Ashcroft IA, Hughes DJ, Shaw SJ. Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading. Int J Adhes Adhes. 2001;21(2):87–99. https:// doi. org/ 10. 1016/ S0143-7496(00) 00038-5.
- [10] Yasaee M, Bond IP, Trask RS, Greenhalgh ES. Mode II interfacial toughening through discontinuous interleaves for damage suppression and control. Compos A Appl Sci Manuf. 2012;43(1):121–8. https:// doi. org/ 10. 1016/j. compo sitesa. 2011. 09. 026.
- [11] Mohr D. On the role of shear strength in sandwich sheet forming. Int J Solids Struct. 2005;42(5–6):1491–512. https:// doi. org/ 10. 1016/j. compo sitesa. 2011. 09. 026.
- [12] Ma YW, Yoon KB. Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing. Mater Sci Eng A. 2010;527(16–17):3630–8. https:// doi. org/ 10. 1016/j. msea. 2010. 02. 057.
- [13] Abendroth M, Meinhard K. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput Mater Sci. 2003;28(3–4):633–44. https:// doi. org/ 10. 1016/j. comma tsci. 2003. 08. 031.
- [14] Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon. 2003;41(14):2779–85. https:// doi. org/ 10. 1016/ S0008-6223(03) 00387-7.
- [15] García TE, Rodríguez C, Belzunce FJ, Suárez C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloy Compd. 2014;582:708–17. https:// doi. org/ 10. 1016/j. jallc om. 2013. 08. 009.
- [16] Baik JM, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Scr Metall. 1983;17:1443–7. https:// doi. org/ 10. 1016/ 0036- 9748(83) 90373-3.
- [17] Mousa S, Kim G-Y. Experimental study on warm roll bonding of metal/polymer/metal multilayer composites. J Mater Process Technol. 2015;222:84–90. https:// doi. org/ 10. 1016/j. jmatp rotec. 2015. 02. 040.
- [18] Mousa S, Kim G-Y. A direct adhesion of metal-polymer-metal sandwich composites by warm roll bonding. J Mater Process Technol. 2017;239:133–9. https:// doi. org/ 10. 1016/j. jmatp rotec. 2016. 08. 017.
- [19] Mousa S, Scheirer N, Kim G-Y. Roll-bonding of metal-polymer-metal sandwich composites reinforced by glass whiskers at the interface. J Mater Process Technol. 2018;255:463–9. https:// doi. org/ 10. 1016/j. jmatp rotec. 2017. 12. 039.
- [20] Mousa S, Abd-Elhady AA, Kim G-Y, Sallam HEM. Fracture behavior of roll bonded Al-brass-Al multilayer composites-concept of the maximum undamaged defect size (dmax). Struct Integr Proc. 2018;13:686–93. https:// doi. org/ 10. 1016/j. prostr. 2018. 12. 114.
- [21] ABAQUS 6.12 (2012) Analysis user’s manual, vol. 5, DassaultSystèmes.
- [22] Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite J-M, Ripplinger S, de Haan F. Recent developments in small punch testing: tensile properties and DBTT. Theoret Appl Fract Mech. 2016;86:2–10. https:// doi. org/ 10. 1016/j. tafmec. 2016. 09. 012.
- [23] Priel E, Mittelman B, Haroush S, Turgeman A, Shneck R, Gelbstein Y. Estimation of yield and ultimate stress using the small punch test method applied to non-standard specimens: a computational study validated by experiments. Int J Mech Sci. 2018;135:484–98. https:// doi. org/ 10. 1016/j. ijmec sci. 2017. 11. 040.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7644c3e9-baf9-45d4-8441-a40bfd9dd60e