
Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017 467

Article citation info:
Peng R, ZhAi Q. Modeling of software fault detection and correction processes with fault dependency. eksploatacja i niezawodnosc –
Maintenance and Reliability 2017; 19 (3): 467–475, http://dx.doi.org/10.17531/ein.2017.3.18.

Rui Peng
Qingqing ZhAi

Modeling of software fault detection and correction processes
with fault dependency

Modelowanie procesów wykrywania i korekcji błędów opro-
graMowania z założenieM wzajeMnej zależności błędów

Software reliability modeling has undergone a continuous evolution over the past three decades to adapt to various and ever-
changing software testing environments. In existing models, immediate fault removal and fault independency are two basic and
commonly used assumptions. Recently, models combining fault detection process (FDP) and fault correction process (FCP) were
proposed to alleviate the immediate fault removal assumption. In this paper, we extend such a methodology by proposing a mod-
eling framework for the FDP and FCP incorporating fault dependency. Faults are classified as leading faults and dependent faults
and the FCPs for both types of faults are explicitly modeled. Several paired models considering different assumptions for debug-
ging lags are proposed for the combined FDP and FCP. The applicability of the proposed models are illustrated using real testing
data. In addition, the optimal software release policy under this framework is studied.

Keywords: fault dependency, non-homogeneous Poisson process (NHPP), software reliability growth model
(SRGM), software fault detection and correction processes.

Modelowanie niezawodności oprogramowania w ciągu ostatnich trzech dekad ulegało ciągłej ewolucji, pozwalającej dostoso-
wać je do różnych, stale zmieniających się środowisk testowych. W przypadku istniejących modeli, dwoma podstawowymi i po-
wszechnie stosowanymi założeniami jest natychmiastowe usunięcie błędu oraz brak zależności między błędami. Ostatnio, badacze
zaproponowali modele, które łagodzą pierwsze z tych założeń, łącząc proces wykrywania błędów (FDP) z procesem ich korekcji
(FCP). W niniejszym artykule, rozszerzono tę metodologię, proponując paradygmat modelowania dla zintegrowanych procesów
FDP i FCP uwzględniający zależności między błędami. W paradygmacie tym, błędy klasyfikuje się jako błędy nadrzędne i błędy
zależne, a procesy FCP dla obu typów błędów są modelowane oddzielnie. Zaproponowano kilka połączonych w pary modeli
rozważających różne założenia dotyczące opóźnień debugowania w procesach łączących detekcję i korekcję błędów. Możliwość
zastosowania proponowanych modeli przedstawiono na przykładzie rzeczywistych danych testowych. Dodatkowo badano opty-
malną politykę aktualizacji oprogramowania, jaką można prowadzić w ramach proponowanego paradygmatu.

Słowa kluczowe: zależność błędów, niejednorodny proces Poissona, model wzrostu niezawodności oprogramo-
wania, procesy detekcji i korekcji błędów oprogramowania

1. Introduction

Software today plays important roles in almost every section of
our society, and the software reliability has been a major concern
in many integrated systems [3]. With continuous debugging, analy-
sis and correction, the software reliability will grow gradually with
testing [33]. During the past three decades, numerous software reli-
ability growth models (SRGMs) have been proposed [2, 7, 24, 26,
35, 40, 41]. Among these models, Non-homogeneous Poisson Process
(NHPP) models are the most commonly accepted [20, 30, 36, 39, 50].
Although NHPP models are mathematically tractable, they are devel-
oped under some strong assumptions on the software testing process.
Specifically, NHPP models assume immediate fault removal and fault
independency. To adapt to different practical software testing environ-
ments, generalizations of traditional models by relaxing the assump-
tions have been proposed [5, 9, 17, 23, 28, 29].

In practical software testing, each detected fault has to be report-
ed, diagnosed, removed and verified before it can be noted as cor-
rected. Consequently, the time spent for fault correction activity is not
negligible. In fact, this debugging lag can be an important element in
making decisions [16, 49]. Therefore, it is necessary to incorporate
the debugging lag into the modeling framework, i.e., to model both
the fault detection process (FDP) and fault correction process (FCP).
The idea of modeling FCP was first proposed in Schneidewind [34],

where a constant lag was used to model the FCP after fault detection.
Clearly, the constant correction time assumption is restrictive for vari-
ous types of faults and different correction profiles. For instance, data
collected from practical testing projects show that the correction time
can be fitted by the exponential and log-normal distributions [27]. In
addition, the correction time may show a growing trend during the
whole testing cycle, as later detected faults can be more difficult to
correct. Some extensions were made in Lo and Huang [25] and Xie, et
al. [44] by incorporating other assumptions of debugging delay. Hu,
et al. [8] studied a data-driven artificial neural network model for the
prediction of FDP and FCP. [37] used the fault detection/correction
profile to quantify the maintainability of software. Some paired FDP
and FCP models were proposed in Peng, et al. [31], where testing ef-
fort function and fault introduction were included.

Traditional NHPP models assume the statistical independency be-
tween successive software failures. Actually, it can hardly be true in
practice, as some faults are not detectable until some other fault has
been corrected because of logical dependency. Moreover, the common
practice of mixing testing strategies can lead to the dependency of fail-
ures [6]. With a failure detected, there is a higher chance for another
related failure or a cluster of failures to occur in the near future. From
this point of view, faults can be classified into mutually independent
and dependent types with respect to path-based testing approach. This

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017468

sciENcE aNd tEchNology

issue was addressed in [18], where an extended NHPP SRGM was
proposed. Huang and Lin [11] studied the fault detection & correction
process considering both fault dependency and debugging lags. Yang,
et al. [46] discussed the statistical inference of the software reliability
model with fault dependency. However, most of the studies only focus
on the FDP, and only the FDP data are used for model parameters es-
timation. As a result, the collected information from FCP is neglected,
which can lead to deficiency in model estimation.

To remedy the problem, we incorporate the fault dependency into
the paired FDP and FCP model. Instead of assuming a single type of
fault, this study classifies the faults in the testing process into leading
faults and dependent faults.The leading faults occurs independently
following an NHPP, while the dependent faults are only detectable
after the related leading faults being corrected. Different from Huang
and Lin [11] which modeled the FDP and the FCP as a single, syn-
thesized fault detection & correction process, we model the FDP and
FCP for the leading faults and the dependent faults separately. Sub-
sequently, the FDP&FCP model for the aggregated, observable faults
can be readily obtained. With different formulation of debug delays,
we can derive various FDP&FCP models. Hence, the proposed mod-
els admit a wide applicability that can account for different software
reliability growth schemes.

The rest of this paper is organized as follows. Section 2 formu-
lates the general modeling framework of paired FDP and FCP with
the incorporation of fault dependency. In Section 3, special paired
FDP and FCP models are derived based on different assumptions for
debugging lags. In Section 4, the proposed faults are fitted to two real
datasets to illustrate the application.Section 5 derives the optimal soft-
ware release policy under the proposed framework. The conclusion is
given in Section 6.

Notation

a The total number of faults in the software
a1 The number of leading faults in the software
a2 The number of dependent faults in the software
p The ratio of the number of leading faults to the total number

of faults
b(t) Fault detection rate function at time t
b Constant fault detection rate
c Constant fault correction rate
δ(t) The time required to correct a fault which is finally cor-

rected at time t
md(t) Expected number of faults detected up to time t
mr(t) Expected number of faults removed up to time t
md1(t) Expected number of leading faults detected up to time t
mr1(t) Expected number of leading faults removed up to time t
md2(t) Expected number of dependent faults detected up to time t
mr2(t) Expected number of dependent faults removed up to time t
λd(t) The intensity function of fault detection process
λr(t) The intensity function of fault correction process
λd1(t) The intensity function offault detection process for leading

faults
λr1(t) The intensity function of fault correction process for lead-

ing faults
λd2(t) The intensity function offault detection process for depend-

ent faults
λr2(t) The intensity function of fault correction process for de-

pendent faults

2. The general framework

In this study, we formulate the fault-oriented software testing
process as a paired fault detection and correction process. During the
test, a fault can only be corrected after being detected. For the faults
embedded in the software system, they can be categorized into lead-
ing faults and dependent ones. The faults that can be detected and
corrected independently are defined as leading faults or independent
faults. Other faults that remain undetectable until the corresponding
leading faults are removed are defined as dependent faults. Fig.1 illus-
trates the relationship between leading faults and dependent faults.

Suppose the leading faults are detected and corrected independ-
ently. Then, for the leading faults, their detection (FDPL) and correc-
tion process (FCPL) can be modeled by NHPP models, as in Xie, et
al. [44]. For the dependent faults, their detection process (FDPD) can
be modeled as a delayed process of FCPL, considering that they are
only detectable after the corresponding leading faults are corrected.
Consequently, the correction process for dependent faults (FCPD) can
be modeled as a delayed process of FDPD. The modeling framework
is characterized by the mean value function for each sub-process.

2.1. Modeling FDPL

We assume that FDPL follows a NHPP, and the expected number
of leading fault detected during (t, t+Δt] is proportional to the number
of undetected leading faults at time t. Thus we have:

 dm t
dt

b t a m td
d

1
1 1

()
= () − ()(), (1)

where b(t) is the fault detection rate at time t and a1 is number of lead-
ing faults at the beginning. With the initial condition md1(t)=0, it can
be derived from (1) that:

 m t a b s dsd

t

1 1
0

1() = − − ()

∫exp . (2)

Different md1(t) can be obtained based on different b(t). Specially,
when b(t) is a constant, we have:

 m t a ed
bt

1 1 1() = −()− , (3)

which is the G-O model [4]. When b t b t
bt

() =
+

2

1
, we have:

 m t a bt ed
bt

1 1 1 1() = − +()()− , (4)

which has the same form as the Yamada delayed-S-shaped model
[45].

Fig. 1. Relationship of leading faults and dependent faults

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017 469

sciENcE aNd tEchNology

2.2. Modeling FCPL

FCPL can be regarded as a delayed process of FDPL and different
models can be used to accommodate the debugging delay. Xie, et al.
[44] pointed out that debugging lags could be assumed constant, time
dependent or random. If the debugging lag is not random, the FCPL
can be derived from FDPL as m t m t tr d1 1() = − ()()δ . Otherwise, we

have m t E m t tr t d1 1() = − ()() ()δ δ if δ(t) is a random variable. In
particular, if the debugging lag is assumed to be an exponentially dis-
tributed random variable, i.e., δ(t)~Exp(c), we have:

 m t c m t s cs dsr

t

d1
0

1() = −() −{ }∫ exp . (5)

Taking the derivatives of both sides with respect to t, we can obtain
that:

 λr d rt c m t m t1 1 1() = () − ()(). (6)

This implies that the expected number of faults corrected dur-
ing (t,t+Δt] is proportional to the number of detected but uncorrected
faults at time t. We call c the fault correction rate.

2.3. Modeling FDPD and FCPD

For these dependent faults, they can only be detected after the
corresponding leading faults are removed. Hence, the proportion of
the detectable dependent faults in the dependent faults is equal to the
proportion of the corrected leading faults in the leading faults. Sup-
pose the number of dependent faults is a2. Then, the expected number
of detectable dependent faults is a2mr1(t)/a1 up to time t. Furthermore,
because leading faults and dependent faults are detected under the
same testing environment, it is reasonable to assume that the fault
detection rate for dependent faults is the same as the fault detection
rate for leading faults. Therefore:

dm t

dt
b t

a m t
a

m td r
d

2 2 1

1
2

()
= () ()

− ()

. (7)

With the initial condition md2 (0)=0, we can derive from (7) based on
mr1(t) and b(t) that:

m t a
a

m t a
a

b s ds sd r

t t

r2
2

1
1

2

1 0 0
1

0
() = () − − ()

()∫ ∫exp expλ

ss
b u du ds∫ ()

. (8)

Particularly, when b(t)=b, we have:

 m t a
a

m t a
a

bt s bs dsd r

t

r2
2

1
1

2

1 0
1() = () − −{ } () { }∫exp exp .λ (9)

Based on the detection process of dependent faults, the corre-
sponding correction process can be obtained as a delayed process as
for leading faults. Thus, with different assumptions for the debugging
delay, mr2(t) of FCPD can be derived accordingly.

2.4. Combined models

With the FDP and FCP models for both kinds of faults, the aggre-
gated model for the paired FDP&FCP can be readily obtained:

 a a a= +1 2, (10)

 m t m t m td d d() = () + ()1 2 , (11)

 m t m t m tr r r() = () + ()1 2 . (12)

3. Specific models for dependent FDP and FCP

In this section, we consider the widely-used constant fault de-
tection rate function b(t), i.e., b(t)=b [10, 22]. In this case, we have

m t ap ed
bt

1 1() = −()− from (3), where p=a1/a is the proportion of
leading faults. As stated, different mr1(t) can be derived based on dif-
ferent assumptions on the debugging lag. Moreover, as long as mr1(t)
being specified, md2(t) can be obtained according to (9). In the follow-
ing, we consider three different types of debugging lags, which have
been observed from practical testing processes. Correspondingly, spe-
cific paired PDF&FCP models are derived.

3.1. Constant debugging lag

We first consider the case where the correction of each fault takes
the same time, i.e., δ(t)=δ. Then, the FCP model of leading faults is:

 m t
t

ap e tr b t1

0

1
() =

<

−() ≥

− −()
,

,
.

δ

δδ (13)

Consequently, the FDP model for dependent faults can be derived
according to (9):

 m t
t

a p b t e td b t2

0

1 1 1
() =

<

−() − + −()()() ≥

− −

,

,
.()

δ

δ δδ (14)

Based on the FDP models of the leading faults and the dependent
faults, md(t) for the aggregated FDP is obtained as:

m t
ap e t

ap e a p b t e
d

bt

bt b t
() =

−() <

−() + −() − + −()()(
−

− − −

1

1 1 1 1

,

()

δ

δ δ)) ≥

 ,

.
t δ

 (15)

Because the FCP models for both kinds of faults are modeled as de-
layed FDP, the aggregated FCP model is:

m t

t

ap e t

ap e a p b

r
b t

b t

() =
<

−() ≤ <

−() + −() − +

− −()

− −()

0

1 2

1 1 1 1

,

,

δ

δ δδ

δ tt e tb t−()()() ≥

− −()2 22δ δδ ,

 (16)

3.2. Time-dependent Debugging Lag

In practice, the faults discovered in the later phase of the testing
process may be more difficult to correct. To model such a phenome-
non, we assume the debugging lag is dependent on the testing time,

δ
γ

t
t

b
() = +()ln 1

, where 0<γ<b. Accordingly, the FCP models for the

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017470

sciENcE aNd tEchNology

two kinds of faults are m t m t
t

b
iri di() = −

+()

 =

ln
, ,

1
1 2

γ
. Under

this assumption, we have:

 m t m t
t

b
ap t er d

bt
1 1

1
1 1() = −

+()

 = − +()()−ln

,
γ

γ (17)

which is a general form of the delayed NHPP model [45].
Based on (9) and (17), md2(t) can be derived. Then, md (t) for the

aggregated FDP is obtained as:

m t a e a p bt b t ed

bt bt() = −() − −() +

− −1 1
2

2γ .
 (18)

Because m t m t
t

br d() = −
+()

ln
,

1 γ
 the model for the aggre-

gated FCP can be derived as follows:

m t a t er

bt() = − +()()−1 1 γ
(19)

− −() +() − +() +() + +
+()

a p t bt t t b t t
b

e1 1 1 1
2

1
2

2 2
γ γ γ

γ γ γ
ln

ln −−bt .

3.3. Exponentially distributed random debugging lag

As obtained in Section 2.2, the number of faults corrected dur-
ing time interval (t,t+Δt] in this case is proportional to the number of
detected but uncorrected faults at time t. Based on (5), mr1(t) can be
obtained as:

 m t

ap bt e c b

ap be ce
c b

c b
r

bt

ct bt1

1 1

1
() =

− +()() =

+
−
−

 ≠

 −

− −

,

,

. (20)

Then, md2(t) can be derived based on mr1(t) according to (9). As the
summation of md1(t) and md2(t), md(t) for the aggregated FDP is thus
obtained:

m t

a e a p bt b t e c b

a e a
d

bt bt

bt
() =

−() − −() +

 =

−() −

− −

−

1 1
2

1 1

2 2
,

−−()
−

+
−()

−()

≠

− − −

p bcte
c b

b e e

c b
c b

bt ct bt2

2 ,

 (21)

From m t c m t s cs dsri

t

di() = −() −{ }∫
0

exp , we note that

m t c m t s cs dsr

t

d() = −() −{ }∫
0

exp also holds. Therefore, mr (t) is read-

ily obtained as:

m t

a bt e a p b t b t e c b

a
r

bt bt

() =

− +()() − −() +

 =

+

− −1 1 1
2 6

1

2 2 3 3
,

bbe ce
c b

abc p

c b

b c e e

c b

ct bt ct bt− − − −
−
−

 −

−()
−()

+() −()
−

+
1

2 bbte cte c bct bt− −+

≠

, �

(22)

4. Numerical example

In this section, we illustrate the application of the proposed mod-
els to two real software testing datasets.

4.1. Description of the Datasets

The first dataset is from the System T1 data of the Rome Air De-
velopment Center (RADC) [27]. This dataset is widely used and it
contains both fault detection data and fault correction data. The cumu-
lative numbers of detected faults and corrected faults during the first
21 weeks are shown in Table 1. During the debugging, 300.1 hours
of computer time were consumed and 136 faults were removed. The
computer time spent in the testing process is used the time scale for
the FDP and FCP.

The second dataset is from the testing process of a middle-size
software project [42, 44]. The cumulative numbers of detected faults
and corrected faults during the first 17 weeks are listed in Table 2.

Table 1. The dataset from System T1.

Weeks
Computer

time
(CPU hours)

Cumulative number
of detected faults

(md)

Cumulative number of
corrected faults (mr)

1 4 2 1

2 8.3 2 2

3 10.3 2 2

4 10.9 3 3

5 13.2 4 4

6 14.8 6 4

7 16.6 7 5

8 31.3 16 7

9 56.4 29 13

10 60.9 31 17

11 70.4 42 18

12 78.9 44 32

13 108.4 55 37

14 130.4 69 56

15 169.9 87 75

16 195.9 99 85

17 220.9 111 97

18 252.3 126 117

19 282.3 132 129

20 295.1 135 131

21 300.1 136 136

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017 471

sciENcE aNd tEchNology

4.2. Performance analysis

To illustrate our models, we consider the following three paired
FDP&FCP models: (1) model with constant debugging lag (abbrevi-

ated as M1); (2) model with δ
γ

t
t

b
() = +()ln 1 (abbreviated as M2);

and (3) model with exponentially distributed debugging lag (abbrevi-
ated M3).

We note that the models proposed in Xie, et al. [44] are special
cases of the proposed FCP&FDP models without considering the de-
pendent faults. For comparison purpose, we also fit the data by the
three simplified models of M1-M3 with p=1, which are abbreviated
as M1’, M2’ and M3’, respectively.

The six models are fitted to the two datasets by the least squares
method. The least squares method minimizes the mean squared error
(MSE) between the estimated cumulative numbers of detected and
corrected faults and the actual cumulative numbers of detected and
corrected faults. It is calculated as:

MSE MSE MSE= +() = () −() + () −()
=

∑
1
2

1
2 1

2 2
d r

i

n
d i d i r i r in

m t m m t m, ,

, (23)

where md,i, mr,i are the observed cumulative numbers of detected
faults and corrected faults at time ti,i=1,…,n. The estimated model
parameters for dataset 1 is given in Table 3.

As can be noticed from Table 1, the estimated parameter a (the to-
tal number of faults) in the three proposed models M1-M3 are close to
each other. They are all close to 188, which is the number of detected
faults after three years’ testing, as reported in Kapur and Younes [18].
On the contrary, the models M1’-M3’, which assume no dependent
faults exist, produce quite large a. Therefore, ignoring the dependent
faults in the model would result in incorrect total number of faults.

According to the MSE values and the point-wise squared error
MSEd,i+MSEr,i in Fig. 2, it shows that the paired FDP&FCP model
with exponentially distributed debugging lag fits the dataset best. On
the other hand, the model M1, which assumes constant debugging lag,
also provides a competitive fit. The model assuming time-dependent
debugging lags provides the least favorable fit. In fact, according to
the estimated model M3, we can derive that the expected length of the

debugging lag is 1 26.08
c
= . This is close to the estimated debugging

lag in M1. Thus, we can infer that there are significant debugging

lags in the software testing process, and it takes about 25 hours for a
detected fault to be corrected.

The estimation results by the six models for dataset 2 are pre-
sented in Table 4. Analogous to the dataset 1, the proposed models
considering both leading and dependent faults are superior to those

Table 2. The dataset from a middle-size software project.

Weeks Cumulative number of
detected faults (md)

Cumulative number of
corrected faults (mr)

1 12 3

2 23 3

3 43 12

4 64 32

5 84 53

6 97 78

7 109 89

8 111 98

9 112 107

10 114 109

11 116 113

12 123 120

13 126 125

14 128 127

15 132 127

16 141 135

17 144 143

Table 3. The estimated model parameters for dataset 1.

Model a b Remark MSE

M1 199.27 0.00717 δ=24.78, p=0.3820 9.0114

M1’ 507.47 0.00110 δ=25.71 10.8924

M2 182.23 0.00955 γ=0.1599, p=0.1374 15.5697

M2’ 1737.64 0.000288 γ=0.0930 26.1383

M3 185.15 0.008456 c=0.03833, p=0.3265 7.8881

M3’ 477.75 0.001177 c=0.03786 10.0985

Fig. 2. Point-wise squared errors of the six fitted models for dataset 1.

Fig. 3. Point-wise squared errors of the six fitted models for dataset 2

Table 4. The estimated model parameters for dataset 2.

Model a b Remark MSE

M1 144 0.3058 δ=1.51,p=0.474 39.5732

M1’ 153.01 0.1487 δ=1.94 41.0015

M2 144 0.3938 γ=0.3112,p=0.0448 49.9352

M2’ 168.36 0.1193 γ=0.2339 104.8889

M3 144 0.3354 c=0.7281,p=0.3551 47.0471

M3’ 156.35 0.1404 c=0.5811 55.1920

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017472

sciENcE aNd tEchNology

only considering leading faults. In the fitting procedure, we restrict
the total number of faults a to be no smaller than the faults in the data.
Therefore, we see that the estimated a are all equal to 144, which is
the number of the total faults in dataset 2. Among the three models
M1-M3, the constant debugging lag model provides the best fit. This
can also be noted from the point-wise squared error in Fig. 3. This
indicates the debugging lag is almost constant in the software testing
process.

5. Software release policy

Based on a SRGM, useful information can be inferred to guide
decision-making. For software projects, one critical decision is to de-
termine the optimal release time [12]. Many studies have dealt with
this problem [13, 19, 21, 32]; see Jain and Priya [14] and Boland and
Chuív [1] for an overview. As cost and reliability requirements are
of great concern, they are often used as objectives for optimizing the
testing time and release policy [15, 38, 47, 48]. In this section, we
study the optimal release policies based on the proposed models from
the cost and reliability perspectives.

5.1. Software release policy based on reliability criterion

Software is usually released when a reliability target is achieved. It
is reasonable to stop testing when a pre-specified proportion of faults
are removed. We use T to denote the length of testing and consider the
ratio of cumulative removed faults to the initial faults in the software
system as the reliability criterion [11]:

 R T
m T

a
r

1 () = () . (24)

With a given reliability target R1, the time to reach this reliability
target is

 T m a Rr1
1

1= ⋅()− . (25)

Another criterion is the software reliability, which is defined as
the probability that no failure occurs during time interval (T,T+ΔT]
given that the software is released at time T. Considering that the re-
liability status of software generally does not change in operational
phase, the reliability function is:

 R T T T Td2 ∆ ∆|() = − () exp ,λ (26)

where λd (T) is the instantaneous failure intensity at time T. For a
given target R2 for R2(ΔT│T), the time for the software to reach R2 can
be solved as minT{T:R2(ΔT│T)≥R2}.

5.2. Software release policy based on cost criterion

For a basic FDP model with mean value function m(t), the follow-
ing cost model is frequently used [43]:

 C T c m T c m m T c T() = () + ∞() − ()() +1 2 3 , (27)

where c1 is the expected cost of removing a fault during testing, c2 is
the expected cost of removing a fault in the field and c3 is the expected
cost per unit time of testing.In practice, the cost of removing a fault
in field is generally greater than that during testing, thus we assume
c2>c1.

When the correction process is incorporated, the following cost
model can be constructed:

 C T c m T c m m T c Tr d r() = () + ∞() − ()() +1 2 3 , (28)

where mr(T) is the total number of corrected faults at the time of re-
lease T, and md (∞) – mr(T) is the number of uncorrected faults that
includes both the undetected faults md (∞) – md(T) and the detected-
but-not-corrected faults md (T) – mr(T). By minimizing the cost mod-
el with respect to T, the optimal release time Tc under the proposed
framework can be obtained.

Theorem 1: Under the proposed models in Section 3, the time Tc
which minimizes C(T) exists. Specifically, there exist 2k(k ≥ 0) non-
negative numbers 0 1 2 2< ≤ ≤…≤ < +∞z z z k which satisfy that C(T)

increases on z zj j2 2 1, +) and decreases on z zj j2 1 2 2+ +), with j=0,…,k,
z0= 0 and z2k+1=+∞.  The  optimal  Tc is determined as
T C Tc

T z z k
= ()

∈ …{ }
arg min

, , ,0 2 2
.

Proof: We just need to prove that there exists a Ts such that Cʹ(T) is
positive for T >Ts. Since C T c m T c m m T c Tr d r() = () + ∞() − ()() +1 2 3 , we

have:

 C T c c c Tr
' .() = − −() ()3 2 1 λ (29)

Clearly, Cʹ(0)= c3>0, indicating that C(T) is increasing when T is
close to zero. We shall prove that λr(T) approaches 0 (or Cʹ(T) ap-
proaches c3) when T approaches +∞. If so, C(T) is increasing when T
is close to 0 or approaches +∞. Consequently, if C(T) has any station-
ary point, it must have even number of stationary points
0 <z1 ≤z2 ≤⋯≤ z2k< +∞ such that C(T) increases on on z zj j2 2 1, +) and

decreases on z zj j2 1 2 2+ +), for j=0,…,k, z0=0 and z2k+1=+∞.  In  the 

following, we shall show that λr(T) approaches 0 when T approach-
es +∞ under the three proposed models.

If the paired model under constant debugging lag assumption is
used, from (16) we have:

λ δ δδ δ
r

b T b TT pabe ab p bT b e T() = + −() −() ≥− −() − −()1 2 22 , . (30)

When T approaches +∞, λr(T) approaches 0.
For the paired model with time-dependent debugging lags, ac-

cording to (18) we have:

λd
bT bTT abe a p b bcT b T b cT e() ()(() /) .() ()= − − + − −− −1 22 2 2 (31)

It can be seen that λd(T) approaches 0 when T approaches +∞. 
Moreover, we have:

λ λ γ
γ
γr dT T

b
T

b T
() = − +()

 −

+()

1 1 1
1

ln .

As T b T− +()−1 1ln γ  approaches +∞ when T approaches +∞ for b>c,
we can see that λr(T) approaches 0 for T → +∞. 

For the paired model under exponentially distributed random de-
bugging lags, we have:

 λr d rT c m T m T() = () − ()(). (32)

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017 473

sciENcE aNd tEchNology

Both md (T) and mr (T) approach a as T approaches +∞. Thus λr(T)ap-
proaches 0 when T approaches +∞. 

5.3. Software release policy based on mixed criterion

When both reliability requirements and the total cost are consid-
ered, we determine the optimal release time T* that minimizes the
total cost under the reliability constraint. Accordingly, the problem
can be formulated as:

Minimize

Subject to

C T c m T c m m T c T

R T
m T

r d r

r

() = () + ∞() − ()() +

() =

1 2 3

1
(()

≥ () = − () ≥a
R R T T T T Rd1 2 2().expor |∆ ∆λ

When the reliability constraint R1(T) is used, we can divide the
time axis [0,∞) into two types of intervals such that C(T) increases on
type 1 intervals and decreases on type 2 intervals. The candidates for
T * comprise of the minimum T on each type 1 interval that satisfies
R1(T)≥R1. Then, T * is the one among all the candidates that leads to
the lowest cost.

When the reliability constraint R2(ΔT│T) is used, we can split the
time axis [0,∞) into four types of intervals such that both R2(ΔT│T)
and C(T) increase on type 1 intervals, both R2(ΔT│T) and C(T) de-
crease on type 2 intervals, R2(ΔT│T) increases while C(T) decreases
on type 3 intervals, and R2(ΔT│T) decreases while C(T) increases on
type 4 intervals. The candidates for T * comprise of the minimum T
in each type 1 interval that satisfies R2(ΔT│T)≥R2, the maximum T in
each type 2 interval that satisfies R2(ΔT│T)≥R2, the end points of type
3 intervals which satisfy R2(ΔT│T)≥R2, and the initial points of type 4
intervals which satisfy R2(ΔT│T)≥R2. The optimal release time T * is
the one corresponding to the lowest cost.

5.4. Numerical examples

For illustration, we consider the paired FDP&FCP model with
constant debugging lag that fits the dataset 1 in Section 4. The model
parameters are a=199.27, b=0.00717, δ=24.78 and p=0.382. In ad-
dition, we assume c1=$300, c2=$2000, c3=$10, ΔT=12, R1=0.95 and
R2=0.95. In the following, we present the optimal release time that
minimizes the cost with specific reliability constraints.

Considering cost criterion and reliability target 1) R1.

From (28), the testing cost under our parameter settings is:

 C T m T Tr() = − () +372500 1700 10 . (33)

On the other hand, the correction process model with given pa-
rameters is:

m T

T

Tr
T() =

<

− ≤ <

−

−

0 24 78

76 12 90 92 24 78 49 56

199 27 2

0 00717

, .

. . , . .

.

.e

004 18 1 26 49 560 00717. . , .

.
.+() ≥

−T TTe

By substituting mr (T) into (33), it can be derived that C(T) in-
creases on [0,24.78], decreases on (24.78,1030.45) and increases on
[1030.45,∞). As can be verified, R1(0)<0.95, R1(1030.45)>0.95. Ac-
cording to the analysis in the preceding section, the optimal release
time is T1 1030 45* .= . Correspondingly, the optimal software testing
costis C T1 45624 87* .() = .

Considering cost criterion and reliability target 2) R2.

When R2(ΔT│T) is used as the reliability constraint, we can de-
rive the following detection rate according to the specified model pa-
rameters:

 λd

T

T
T

T

T T
() =

<

+

−

−

0 5458 24 78

0 3584 0 0076

0 00717

0 00717

. , .

(. .) ,

.

.

e

e ≥≥

 24 78.
.

It can be verified that λd (T) decreases on [0,24.78), increases on
[24.78,92.07),  and  decreases  on  [92.07,∞). Accordingly, R2(ΔT│T)
increases on [0,24.78), decreases on [24.78,92.07), and increases on
[92.07,∞). Referring to the analysis in Section 5.3, the axis [0,∞) can 
be divided into a type 1 interval [0,24.78), a type 2 interval
[24.78,92.07), a type 3 interval [92.07,1030.45) and a type 1 interval
[1030.45,+∞). Because R2(ΔT│T) <0.95 for all T∊[0,92.07), there is
no permissible T in this interval. Therefore, the candidates for the op-
timal T* are the right endpoint 1030.45 of the type 3 interval and the
minimum T in [1030.45,+∞) that satisfies R2(ΔT│T) ≥0.95. Because 
R2(ΔT│1030.45)=0.93<0.95,  the  optimal  *

2T is found as
(){ }arg min 1030.45, | 0.95 1056.81

T
T R T T≥ ∆ ≥ = . The optimal soft-

ware testing cost is C T2 45645 38* .() = , which is slightly larger than

that in the last case. An illustration of the optimal release policies un-
der two scenarios is given in Fig. 4.

6. Conclusion

In this paper, we proposed a framework for the software reliability
growth modeling. The software testing process was considered as a
paired fault detection and correction process, and the faults during the
testing were classified into leading and dependent faults according to
their detectability. The leading faults can be detected and corrected
directly, whereas the dependent faults can only be detected until the
corresponding leading faults are corrected. For both types of faults,
the FCP was modeled as a delayed FDP. In addition, the FDP of de-
pendent faults depended on the FCP of leading faults. Special paired
FDP&FCP models were derived under the proposed framework with
different assumptions on the debugging lag. The application to two
real software testing datasets revealed the effectiveness and the supe-
riority of the proposed models over existing ones. Under this frame-
work, the optimal software release policy was investigated consider-
ing cost and reliability requirements.

As a direction for future studies, the proposed modeling frame-
work can be extended to incorporate other information or adapt to oth-
er testing environments. For instance, Bayesian technique can be used
to incorporate prior information and update model parameters when
more information is available. In addition, the imperfect fault correc-
tion or the fault introduction phenomenon can be incorporated, as it is
common for debuggers to make mistakes with fault correction.

Fig. 4. Variation of normalized total cost function and software reliability
functions with testing time

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017474

sciENcE aNd tEchNology

Acknowledgements
The research is supported by the NSFC under grant number

71671016 and 71231001 and 71420107023,and by the Fundamental
Research Funds for the Central Universities of China FRF-BR-15-

001B.

References

1. Boland P J and Chuív N N. Optimal times for software release when repair is imperfect. Statistics & Probability Letters 2007; 77(12): 1176-
1184, https://doi.org/10.1016/j.spl.2007.03.004.

2. Chang Y-C and Liu C-T. A generalized JM model with applications to imperfect debugging in software reliability. Applied Mathematical
Modelling 2009; 33(9): 3578-3588, https://doi.org/10.1016/j.apm.2008.11.018.

3. Febrero F, Calero C, and Ángeles Moraga M. Software reliability modeling based on ISO/IEC SQuaRE. Information and Software Technology
2016; 70: 18-29, https://doi.org/10.1016/j.infsof.2015.09.006.

4. Goel A L and Okumoto K. Time-dependent error-detection rate model for software reliability and other performance measures. IEEE
Transactions on Reliability 1979; 28(3): 206-211, https://doi.org/10.1109/TR.1979.5220566.

5. Gokhale S S, Lyu M R, and Trivedi K S. Analysis of software fault removal policies using a non-homogeneous continuous time Markov
chain. Software Quality Journal 2004;12(3): 211-230, https://doi.org/10.1023/B:SQJO.0000034709.63615.8b.

6. Goseva-Popstojanova K and Trivedi K S. Failure correlation in software reliability models. IEEE Transactions on Reliability 2000; 49(1):
37-48, https://doi.org/10.1109/24.855535.

7. Gutjahr W J. A reliability model for nonhomogeneous redundant software versions with correlated failures. Computer Systems Science and
Engineering 2001;16(6): 361-370.

8. Hu Q, Xie M, Ng S H, and Levitin G. Robust recurrent neural network modeling for software fault detection and correction prediction.
Reliability Engineering & System Safety 2007;92(3): 332-340. https://doi.org/10.1016/j.ress.2006.04.007

9.  Huang  C-Y  and  Huang W-C,  Software  reliability  analysis  and  measurement  using  finite  and  infinite  server  queueing  models.  IEEE 
Transactions on Reliability 2008; 57(1): 192-203, https://doi.org/10.1109/TR.2007.909777.

10. Huang C-Y, Kuo S-Y, and Lyu M R. An assessment of testing-effort dependent software reliability growth models. IEEE Transactions on
Reliability 2007; 56(2): 198-211, https://doi.org/10.1109/TR.2007.895301.

11. Huang C-Y and Lin C-T. Software reliability analysis by considering fault dependency and debugging time lag. IEEE Transactions on
Reliability 2006;55(3): 436-450. https://doi.org/10.1109/TR.2006.879607

12.  Huang C-Y and Lyu M R, Optimal release time for software systems considering cost, testing-effort, and test efficiency. IEEE Transactions 
on Reliability 2005; 54(4): 583-591, https://doi.org/10.1109/TR.2005.859230.

13. Inoue S and Yamada S. Generalized discrete software reliability modeling with effect of program size. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans 2007; 37(2): 170-179, https://doi.org/10.1109/TSMCA.2006.889475.

14.  Jain M and Priya K. Software reliability issues under operational and testing constraints. Asia-Pacific Journal of Operational Research 2005; 
22(01): 33-49, https://doi.org/10.1142/S021759590500042X.

15. Jha P, Gupta D, Yang B, and Kapur P. Optimal testing resource allocation during module testing considering cost, testing effort and reliability.
Computers & Industrial Engineering 2009; 57(3): 1122-1130, https://doi.org/10.1016/j.cie.2009.05.001.

16. Jia L, Yang B, Guo S, and Park D H. Software reliability modeling considering fault correction process. IEICE Transactions on Information
and Systems 2010; 93(1): 185-188, https://doi.org/10.1587/transinf.E93.D.185.

17. Kapur P, Goswami D, Bardhan A, and Singh O. Flexible software reliability growth model with testing effort dependent learning process.
Applied Mathematical Modelling 2008; 32(7): 1298-1307, https://doi.org/10.1016/j.apm.2007.04.002.

18. Kapur P and Younes S. Software reliability growth model with error dependency. Microelectronics Reliability 1995; 35(2): 273-278, https://
doi.org/10.1016/0026-2714(94)00054-R.

19.  Kim H S, Park D H, and Yamada S. Bayesian optimal release time based on inflection S-shaped software reliability growth model. IEICE 
Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2009; 92(6): 1485-1493, https://doi.org/10.1587/
transfun.E92.A.1485.

20. Lee C H, Kim Y T, and Park D H. S-shaped software reliability growth models derived from stochastic differential equations. IIE transactions
2004; 36(12): 1193-1199, https://doi.org/10.1080/07408170490507792.

21. Li X, Xie M, and Ng S H. Sensitivity analysis of release time of software reliability models incorporating testing effort with multiple change-
points. Applied Mathematical Modelling 2010; 34(11): 3560-3570, https://doi.org/10.1016/j.apm.2010.03.006.

22. Lin C-T and Huang C-Y., Enhancing and measuring the predictive capabilities of testing-effort dependent software reliability models.
Journal of Systems and Software 2008; 81(6): 1025-1038, https://doi.org/10.1016/j.jss.2007.10.002.

23.  Lin C-T and Huang C-Y. Staffing level and cost analyses for software debugging activities through rate-based simulation approaches. IEEE 
Transactions on Reliability 2009; 58(4): 711-724, https://doi.org/10.1109/TR.2009.2019669.

24. Lin C-T and Li Y-F. Rate-based queueing simulation model of open source software debugging activities. IEEE Transactions on Software
Engineering 2014; 40(11): 1075-1099, https://doi.org/10.1109/TSE.2014.2354032.

25. Lo J-H and Huang C-Y. An integration of fault detection and correction processes in software reliability analysis. Journal of Systems and
Software 2006; 79(9): 1312-1323, https://doi.org/10.1016/j.jss.2005.12.006.

26. Lyu M R. Handbook of Software Reliability Engineering. New York: McGraw-Hill, Inc., 1996.
27. Musa J D, Iannino A, and Okumono K. Software Reliability, Measurement, Prediction and Application. New York: McGraw-Hill, Inc,

1987.
28.  Okamura H and Dohi T. Unification of software reliability models using Markovian arrival processes, in Proceedings of 17th Pacific Rim 

International Symposium on Dependable Computing (PRDC) 2011: 20-27, https://doi.org/10.1109/prdc.2011.12.

Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 3, 2017 475

sciENcE aNd tEchNology

29. Okamura H, Dohi T, and Osaki S. Software reliability growth models with normal failure time distributions. Reliability Engineering &
System Safety 2013; 116: 135-141, https://doi.org/10.1016/j.ress.2012.02.002.

30. Peng R, Li Y-F, Zhang J-G, and Li X. A risk-reduction approach for optimal software release time determination with the delay incurred cost.
International Journal of Systems Science 2015; 46(9): 1628-1637, https://doi.org/10.1080/00207721.2013.827261.

31. Peng R, Li Y-F, Zhang W, and Hu Q. Testing effort dependent software reliability model for imperfect debugging process considering both
detection and correction. Reliability Engineering & System Safety 2014;126: 37-43, https://doi.org/10.1016/j.ress.2014.01.004.

32. Pietrantuono R, Russo S, and Trivedi K S. Software reliability and testing time allocation: An architecture-based approach. IEEE Transactions
on Software Engineering 2010; 36(3): 323-337, https://doi.org/10.1109/TSE.2010.6.

33. Rana R, Staron M, Berger C, Hansson J, Nilsson M, Törner F, et al., Selecting software reliability growth models and improving their predictive
accuracy using historical projects data. Journal of Systems and Software 2014; 98: 59-78, https://doi.org/10.1016/j.jss.2014.08.033.

34. Schneidewind N F. Analysis of error processes in computer software, in Proceedings of 1975 International Conference on Reliable Software
1975: 337-346, https://doi.org/10.1145/800027.808456.

35.  Shatnawi O. Discrere time modelling in software reliability engineering-A unified approach. Computer Systems Science and Engineering 
2009;24(6): 391.

36. Shatnawi O. Measuring commercial software operational reliability: an interdisciplinary modelling approach. Eksploatacja i Niezawodnosc
- Maintenance and Reliability 2014;16(4): 585-594.

37. Shibata K, Rinsaka K, Dohi T, and Okamura H. Quantifying software maintainability based on a fault-detection/correction model, in
Proceedings of 13th Pacific Rim International Symposium on Dependable Computing (PRDC2007) 2007: 35-42, https://doi.org/10.1109/
PRDC.2007.46.

38.  Shinohara Y, Nishio Y, Dohi T, and Osaki S. An optimal software release problem under cost rate criterion: artificial neural network approach. 
Journal of Quality in Maintenance Engineering 1998; 4(4): 236-247, https://doi.org/10.1108/13552519810233967.

39.  Tamura Y and Yamada S. A flexible stochastic differential equation model in distributed development environment. European Journal of 
Operational Research 2006; 168(1): 143-152, https://doi.org/10.1016/j.ejor.2004.04.034.

40. Ullah N, Morisio M, and Vetro A. A comparative analysis of software reliability growth models using defects data of closed and open source
software, in Proceedings of 35th Annual IEEE Software Engineering Workshop 2012: 187-192, https://doi.org/10.1109/sew.2012.26.

41. Wang L, Hu Q, and Liu J. Software reliability growth modeling and analysis with dual fault detection and correction processes. IIE
Transactions 2016; 48(4): 359-370, https://doi.org/10.1080/0740817X.2015.1096432.

42. Wu Y, Hu Q, Xie M, and Ng S H. Modeling and analysis of software fault detection and correction process by considering time dependency.
IEEE Transactions on Reliability 2007; 56(4): 629-642, https://doi.org/10.1109/TR.2007.909760.

43.  Xie M. Software reliability modelling. Singapore: World Scientific, 1991, https://doi.org/10.1142/1390.
44. Xie M, Hu Q, Wu Y, and Ng S H. A study of the modeling and analysis of software fault-detection and fault-correction processes. Quality

and Reliability Engineering International 2007; 23(4): 459-470, https://doi.org/10.1002/qre.827.
45. Yamada S, Ohba M, and Osaki S. S-shaped software reliability growth models and their applications. IEEE Transactions on Reliability 1984;

33(4): 289-292, https://doi.org/10.1109/TR.1984.5221826.
46. Yang B, Guo S, Ning N, and Huang H-Z. Parameter estimation for software reliability models considering failure correlation, in Proceedings

of Annual Reliability and Maintainability Symposium (RAMS 2008) 2008: 405-410, https://doi.org/10.1109/rams.2008.4925830.
47. Zhang X and Pham H. Comparisons of nonhomogeneous Poisson process software reliability models and its applications. International

Journal of Systems Science 2000; 31(9): 1115-1123, https://doi.org/10.1080/002077200418397.
48. Zhang X and Pham H. Predicting operational software availability and its applications to telecommunication systems. International Journal

of Systems Science 2002; 33(11): 923-930, https://doi.org/10.1080/0020772021000023022.
49.  Zhang X, Teng X, and Pham H. Considering fault removal efficiency in software reliability assessment. IEEE Transactions on Systems, Man, 

and Cybernetics-Part A: Systems and Humans 2003; 33(1): 114-120, https://doi.org/10.1109/TSMCA.2003.812597.
50. Zhao J, Liu H-W, Cui G, and Yang X-Z. Software reliability growth model with change-point and environmental function. Journal of

Systems and Software 2006; 79(11): 1578-1587, https://doi.org/10.1016/j.jss.2006.02.030.

rui peng
Donlinks School of economics & Management
University of Science & Technology Beijing, China

Qingqing zhai
Department of industrial and Systems engineering
national University of Singapore, Singapore

e-mails: pengrui1988@ustb.edu.cn, isezq@nus.edu.sg

