PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Prediction and control of ground vibrations due to blasting activities in aggregate mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting and controlling ground vibrations from blasting is crucial for protecting structures andminimizing environmental impacts. This study investigates how explosive quantity and scaled distances affect peak particle velocity and establishes empirical equations to estimate this velocity at different distances from the blast area. The study found that the maximum charge per delay at a peak particle velocity of 10 mm/s was reduced to 13.46% as the delay timing was increased from 0 to 25 ms and 9.99% from 0 to 50 ms delay timing. The reduction of maximum charge with increasing delay timing leads to the reduction of ground vibration. The developed model is validated with statistical analysis and field data, offering practical tools for optimizing blast designs to reduce ground vibrations. Blast monitoring data showed that over 98% of events had frequencies above 8 Hz, leading the study to use peak particle velocity thresholds of 10 mm/s and 15 mm/s. The statistical analysis showed a strong correlation between predicted and observed peak particle velocity for delay durations. The coefficient of determination was 0.83, 0.89, and 0.90 for 0, 25 ms, and 50 ms delay timings, respectively, underscoring the precision and reliability of the predictive models.
Rocznik
Strony
267--281
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
  • Department of Mining Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, India
  • Department of Mining Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, India
  • Department of Mining Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, India
Bibliografia
  • [1] Choudhary BS. Firing patterns and its effect on muckpile shape parameters and fragmentation in quarry blasts. Int J Res Eng Technol 2013;2(9):32e45. https://doi.org/10.15623/ ijret.2013.0209005.
  • [2] Chouhan LS, Raina AK, Murthy VMSR. A dynamic image analysis method for fragmentation measurement in blasting. J Sci Ind Res (India) 2022;81(2):188e201. https://doi.org/ 10.56042/jsir.v81i02.54987.
  • [3] Anurag Agrawal SM, Choudhary BS, Murthy VMSR. Impact of bedding planes, delay interval and firing orientation on blast induced ground vibration in production blasting with controlling strategies. 2022.
  • [4] AyalaCarcedo F. Drilling and blasting of rocks. Routledge; 2017.
  • [5] Murlidhar SC, Ramesh Bhatawdekar, Jahed Armaghani Danial, TonnizamMohamad Edy. Rock fragmentation prediction through a new hybrid model based on imperial competitive algorithm and neural network. Smart Constr Res 2018;2(3):1e12. https://doi.org/10.18063/scr.v2i3. 397.
  • [6] Su H, Ma S. Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. 2022. p. 1e15. https://doi.org/10.3389/feart.2022.990012. September.
  • [7] Lu Y, Jin C, Wang Q, Han T, Chen L. Modeling study on cumulative damage effects and safety control criterion of open-pit final slope under blasting. Rock Mech Rock Eng 2024;57(3):2081e101. https://doi.org/10.1007/s00603-023- 03656-x.
  • [8] Afeni TB, Osasan SK. Assessment of noise and ground vibration induced during blasting operations in an open pit mineda case study on Ewekoro limestone quarry, Nigeria. Min Sci Technol 2009;19(4):420e4.
  • [9] Matidza MI, Jianhua Z, Gang H, Mwangi AD. Assessment of blast-induced ground vibration at Jinduicheng molybdenum open pit mine. Nat Resour Res 2020;29:831e41. [10] Ricker N. Transient waves in visco-elastic media, vol. 10. Elsevier; 2012.
  • [11] Gorgülü K, Arpaz E, Demirci A, Koçaslan A, Dilmaç MK, Yüksek AG. Investigation of blast-induced ground vibrations in the Tülü boron open pit mine. Bull Eng Geol Environ 2013; 72:555e64.
  • [12] Raina AK, Bhatawdekar RM. Blast-induced flyrock: risk evaluation and management. In: Risk, reliability and sustainable remediation in the field of civil and environmental engineering. Elsevier; 2022. p. 209e47.
  • [13] Legg MR, Kamerling MJ. Large-scale basement-involved landslides, California continental borderland. Pure Appl Geophys 2003;160(10e11):2033e51. https://doi.org/10.1007/ s00024-003-2418-9.
  • [14] Lu Y, Jin C, Wang Q, Han T, Zhang J, Chen L. Numerical study on spatial distribution of blast-induced damage zone in open-pit slope. Int J Rock Mech Min Sci 2023;163(October 2022). https://doi.org/10.1016/j.ijrmms.2023.105328.
  • [15] Matidza MI, Jianhua Z, Gang H, Mwangi AD. Assessment of blast-induced ground vibration at Jinduicheng molybdenum open pit mine. Nat Resour Res 2020;29(2):831e41. https:// doi.org/10.1007/s11053-020-09623-5.
  • [16] Yin ZQ, Hu ZX, Wei ZD, Zhao GM, Hai-feng M, Zhang Z, et al. Assessment of blasting-induced ground vibration in an open-pit mine under different rock properties. Adv Civ Eng 2018;2018. https://doi.org/10.1155/2018/4603687.
  • [17] Li G, Qiao D, Sun H. Numerical analysis and application on the parameters optimization of open-pit deep-hole bench loose blasting. Int J u- e- Serv Sci Technol 2016;9(12):335e50. https://doi.org/10.14257/ijunesst.2016.9.12.30.
  • [18] Wiss JF, Linehan PW. Control of vibration and air noise from surface coal mines. US Bureau of Mines Report OFR. 1978. p. 103.
  • [19] Hosseini S, Khatti J, Taiwo BO, Fissha Y, Grover KS, Ikeda H, et al. Assessment of the ground vibration during blasting in mining projects using different computational approaches Cosine amplitude method. Sci Rep 2023:1e30. https:// doi.org/10.1038/s41598-023-46064-5.
  • [20] Nateghi R. Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures. Soil Dynam Earthq Eng 2012;43:133e8. https://doi.org/10.1016/ j.soildyn.2012.07.009.
  • [21] Roy MP, Singh PK, Sarim M, Shekhawat LS. Blast design and vibration control at an underground metal mine for the safety of surface structures. Int J Rock Mech Min Sci 2016;83: 107e15. https://doi.org/10.1016/j.ijrmms.2016.01.003.
  • [22] Khandelwal M, Singh TN. Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. J Sound Vib 2006;289(4e5):711e25. https://doi.org/10.1016/j.jsv.2005.02.044.
  • [23] Raina AK. Flyrock in surface mining: origin, prediction, and control. CRC Press; 2023.
  • [24] Raina AK, Murthy VMSR, Soni AK. Flyrock in bench blasting: a comprehensive review. Bull Eng Geol Environ 2014; 73(4):1199e209. https://doi.org/10.1007/s10064-014-0588-6.
  • [25] Wu W. The effect of simulated detonator scatter on rock fragmentation and ground vibrations in single-row bench blasting. 1984.
  • [26] Fan LF, Sun HY. Seismic wave propagation through an insitu stressed rock mass. J Appl Geophys 2015;121:13e20. https://doi.org/10.1016/j.jappgeo.2015.07.002.
  • [27] Dowding CH. Blast vibration monitoring and control. 1985.
  • [28] Dvorak A. Seismic effects of blasting on brick houses. Proce Geofyrikeniha Ustance Ces. Acad. 1962;169:189e202.
  • [29] Siskind DE, Strachura VJ, Stagg MS, Kopp JW. Structure response and damage produced by airblast from surface mining, vol. 8485. US Department of the Interior, Bureau of Mines; 1980.
  • [30] Mohamed MT. Artificial neural network for prediction and control of blasting vibrations in Assiut (Egypt) limestone quarry. Int J Rock Mech Min Sci 2009;46(2):426e31. https:// doi.org/10.1016/j.ijrmms.2008.06.004.
  • [31] Duan B, Xia H, Yang X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways. Tunn Undergr Space Technol 2018;71(November 2017): 605e22. https://doi.org/10.1016/j.tust.2017.10.012.
  • [32] Bastami R, Aghajani Bazzazi A, Shoormasti HH, Ahangari K. Prediction of blasting cost in limestone mines using gene expression programming model and artificial neural networks. J Min Environ 2020;11(1):281e300. https://doi.org/ 10.22044/jme.2019.9027.1790.
  • [33] Gao P, Pan C, Zong Q, Dong C. Rock fragmentation size distribution control in blasting: a case study of blasting mining in Changjiu Shenshan limestone mine. Front Mater 2023;10(December):1e10. https://doi.org/10.3389/fmats.2023. 1330354.
  • [34] Dao H, Pham TL, Nguyen PH. Study on an online vibration measurement system for seismic waves caused by blasting for mining in Vietnam. J Min Environ 2021;12(2):313e25. https://doi.org/10.22044/jme.2021.10677.2028.
  • [35] Rustan A, Cunningham C, Fourney W, Spathis A, Simha KRY. Mining and rock construction technology desk reference: rock mechanics, drilling & blasting. CRC Press; 2010.
  • [36] Dang VK, Dias D, Do NA, Vo TH. Impact of blasting at tunnel face on an existing adjacent tunnel. Int J GEOMATE 2018;15(47):22e31. https://doi.org/10.21660/2018.47. 04640.
  • [37] Navarro J, Sanchidrian JA, Segarra P, Castedo R, Costamagna E, Lopez LM. Detection of potential overbreak zones in tunnel blasting from MWD data. Tunn Undergr Space Technol 2018;82(March):504e16. https://doi.org/ 10.1016/j.tust.2018.08.060.
  • [38] Jang H, Kawamura Y, Shinji U. An empirical approach of overbreak resistance factor for tunnel blasting. Tunn Undergr Space Technol 2019;92(July):103060. https://doi.org/ 10.1016/j.tust.2019.103060.
  • [39] Liu D, Lu W, Yang J, Gao J, Yan P, Hu S, et al. Relationship between cracked-zone radius and dominant frequency of vibration in tunnel blasting. Int J Rock Mech Min Sci 2022; 160(January):105249. https://doi.org/10.1016/j.ijrmms.2022. 105249.
  • [40] Rodríguez R, Torano J, Menendez M. Prediction of the airblast wave effects near a tunnel advanced by drilling and blasting. Tunn Undergr Space Technol 2007;22(3):241e51. https://doi.org/10.1016/j.tust.2006.09.001.
  • [41] Xu P, shu Yang R, Guo Y, Chen C, Kang Y. Investigation of the effect of the blast waves on the opposite propagating crack. Int J Rock Mech Min Sci 2021;144(May):104818. https:// doi.org/10.1016/j.ijrmms.2021.104818.
  • [42] Ziaran S, Musil M, Cekan M, Chlebo O. Analysis of seismic waves generated by blasting operations and their response on buildings. Int J Environ Ecol Eng 2013;7(11):501e6.
  • [43] Duvall WI, Petkof B. Spherical propagation of explosion-generated strain pulses in rock, no. 5481e5485. US Department of the Interior, Bureau of Mines; 1959.
  • [44] Langefors U, Kihlstrom B. The modern technique of rock blasting. 1963 (No Title).
  • [45] Ambraseys A, Hendron NR. Dynamic behaviour of rock masses rock mechanics in engineering practices. 1968.
  • [46] Ghosh A, Daemen JJK. A simple new blast vibration predictor (based on wave propagation laws). In: ARMA US rock mechanics/ geomechanics symposium, ARMA; 1983. ARMAe83.
  • [47] I. Indian Standard. Criteria for safety and design of structures subjected to under ground blast. ISI.; 1973. IS-6922, no. 1973.
  • [48] Roy PP. Vibration control in an opencast mine based on improved blast vibration predictors, vol. 12; 1991. p. 157e65.
  • [49] Duvall WI, Fogelson DE. Review of criteria for estimating damage to residences from blasting vibrations, vol. 5968. US Department of the Interior, Bureau of Mines; 1962.
  • [50] Parida A, Mishra MK. Blast vibration analysis by different predictor approaches-A comparison. Procedia Earth Planet Sci 2015;11:337e45. https://doi.org/10.1016/j.proeps.2015.06. 070.
  • [51] Khandelwal M, Singh TN. Evaluation of blast-induced ground vibration predictors. Soil Dynam Earthq Eng 2007; 27(2):116e25. https://doi.org/10.1016/j.soildyn.2006.06.004.
  • [52] Hajihassani M, Jahed Armaghani D, Marto A, Tonnizam Mohamad E. Vibrations au sol prediction dans quarry dynamitage _a travers un reeseau neural artificiel optimis_e par une concurrence imperialist algorithme. Bull Eng Geol Environ 2015;74(3):873e86. https://doi.org/10.1007/s10064- 014-0657-x.
  • [53] Tripathy GR, Shirke RR, Kudale MD. Safety of engineered structures against blast vibrations: a case study. J Rock Mech Geotech Eng 2016;8(2):248e55. https://doi.org/10.1016/ j.jrmge.2015.10.007.
  • [54] DGMS Circular. Blasting safety and regulations. 1997. p. 1e14.
  • [55] Faramarzi F, Farsangi MAE, Mansouri H. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting. Int J Min Sci Technol 2014;24(5):663e9.
  • [56] Bakhtavar E, Yousefi S. Analysis of ground vibration risk on mine infrastructures: integrating fuzzy slack-based measure model and failure effects analysis. Int J Environ Sci Technol 2019;16(10):6065e76.
  • [57] Standard A. Explosivesdstorage and use, Part 2: use of explosives. Sydney, Australia: Australian Standard; 2006.
  • [58] DGMS. Damage of structures due to blast induced ground vibrations in the mining areas, no. 7. 1997. p. 1e4 (DGMS (Tech) (S&T) Circular No.7 of 1997.
  • [59] Ainalis D, Kaufmann O, Tshibangu J-P, Verlinden O, Kouroussis G. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review. Rock Mech Rock Eng 2017;50:171e93.
  • [60] Brilha J. Mining and geoconservation. In: Encyclopedia of mineral and energy policy. Springer; 2023. p. 468e70.
  • [61] Garza C, Langefeld DP. Industry standards of ground vibration PPV limits and associated distress. In: Eighth congress on forensic engineering. VA: American Society of Civil Engineers Reston; 2018. p. 1125e33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7641bb6b-5509-4567-97fa-b15eb596ae9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.