PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural zeolite as a replacement for resin in the cation exchange process of cesium on post-irradiated nuclear fuel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Characterization of natural salts from Bayah, Lampung, and Tasikmalaya, Indonesia has been carried out as a substitute for synthetic resins. The characteristics include zeolite activation with NH4Cl, and heated at 200C, the bond stability test of 137Cs-zeolite, chemical composition analysis, surface area, pore size, analysis of Cs cation exchange capacity (CEC), diffusion coeffi cient (Di), activation energy (Ea), and absorption of three zeolites. To do this, pipette 50 l of a standard solution of 137Cs from the National Institute of Standards and Technology (NIST), put in, 2 ml of 0.1 N HCl, and then add 1 g of zeolite and stir each for 1, 2, 3, 4, 5, and 24 h. Based on this stirring time, the 137C isotope will exchange ions with NH4-zeolite to 137Cs-zeolite in the solid phase. The content of 137Cs in 137Cs-zeolites (solid phase) was analysed using a gamma spectrometer. The results of the chemical composition analysis showed that the character of zeolite from Lampung has a Si/Al ratio, with a CEC value of 1.448 mEq/g which is greater than Bayah and Tasikmalaya, while the Di and Ea values for the three select types were obtained almost the same. Moreover, the stability test of the Cs ion bond with zeolite showed no signifi cant release of Cs ions from the zeolite structure. It can be concluded that the three soloists tested that the zeolite from Lampung has better characters. The results of 137Cs isotope separation in 150 l of U3Si2/Al fuel solution post-irradiation using zeolite from Lampung and Dowex resins obtained almost the same recovery around 98–99%, so it can be concluded that zeolite from Lampung can be used as a substitute for synthetic resin in the cation exchange process for the 137Cs isotope in nuclear fuel post-irradiated.
Słowa kluczowe
Czasopismo
Rocznik
Strony
11--19
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
autor
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
autor
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
autor
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
autor
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
autor
  • Center for Nuclear Fuel Technology National Nuclear Energy Agency of Indonesia Buid. 20, Kawasan Puspiptek-Setu Tangerang Selatan 15314, Indonesia
Bibliografia
  • 1. ASTM. (2014). Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis. (ASTM C-1411).
  • 2. Wiyantoko, B., & Rahman, N. (2017). Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method. AIP Conf. Proc., 1911, 020021. https://doi.org/10.1063/1.5016014.
  • 3. Ilić, B., & Wettstein, S. (2017). A review of adsorbate and temperature-induced zeolite framework fl exibility. Microporous Mesoporous Mat., 239, 221–234. https://doi.org/10.1016/j.micromeso. 2016.10.005.
  • 4. Kong, M., Liu, Z., Vogt, T., & Lee, Y. (2016). Chabazite structures with Li, Na, Ag, K, NH4, Rb and Cs as extra-framework cations. Microporous Mesoporous Mat., 221, 253–263. https://doi.org/10.1016/j.micromeso. 2015.09.031.
  • 5. Sing, D. N., & Kolay, P. K. (2002). Simulation of ash-water interaction and its infl uence on ash characteristics. Prog. Energy Cumbust. Sci., 28, 267–299.
  • 6. Dyer, A., Harjula, R., Newton, J., & Pilinger, M. (2010). Synthesis and characterisation of mesoporous silica phases containing heteroatoms, and their cation exchange properties. Part 5: Cation exchange isotherms, and the measurement of radioisotope distribution coeffi cients, for an MCM-22 phase containing aluminium. Microporous Mesoporous Mat., 135(1/3), 21–29. https://doi.org/10.1016/j.micromeso. 2010.06.006.
  • 7. Pepe, F., de Gennaro, B., Aprea, P., & Caputo, D.(2013). Natural zeolites for heavy metals removal from aqueous solutions: Modeling of the fi xed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuff. J. Chem. Eng., 219, 37–42. https://doi.org/10.1016/j.cej.2012.12.075.
  • 8. Ginting, A. Br., & Anggraini, D. (2012). The effect of zeolite addition on the of 137Cs in irradiated U3Si2-Al. fuel element plate. Journal Teknol. Bahan Nuklir, 7(2), 123–135.
  • 9. Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029.
  • 10. Estiaty, L. M. (2010). Engineering of zeolite mineral with wet impregnation inhibitor metal method as raw material of antiseptic by continous fl ow method. Jurnal Zeolit Indonesia, 9(2), 6–70. (in Indonesian).
  • 11. Johan, E., Yamada, T., Wazingwa Munthali, M., Kabwadza-Corner, P., Aono, H., & Matsue, N. (2015).Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ. Sci., 28, 52–56.
  • 12. Zhang, J., Singh, R., & Webley, P. A. (2008). Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mat., 111(1/3), 478–487. DOI:10.1016/j.micromeso.2007.08.022.
  • 13. Borai, E. H., Harjula, R., Malinen, L., & Paajanen, A. (2009). Effi cient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater., 172(1), 416–422. https://doi.org/10.1016/j.jhazmat. 2009.07.033.
  • 14. Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous Mesoporous Mat., 224, 84–88. https://doi.org/10.1016/j.micromeso. 2015.11.024.
  • 15. Cortés-Martínez, R., Olguín, M. T., & Solache-Ríos, M. (2010). Cesium sorption by clinoptilolite-rich tuffs in batch and fi xed-bed systems. Desalination, 258(1/3), 164–170. https://doi.org/10.1016/j.desal.2010.03.019.
  • 16. El-Kamash, A. M. (2008). Evaluation of zeolite for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fi xed bed column operations. J. Hazard. Mater., 151(2/3), 432–445. https://doi.org/10.1016/j.jhazmat.2007.06.009.
  • 17. Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1/3), 306–318. DOI:10.1016/j.desal.2008.01.018.
  • 18. Abdel Moamen, O. A., Ismail, I. M., Abdelmonem, N., & Abdel Rahman, R. O. (2015). Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. Journal Taiwan Inst. Chem. Eng., 55, 133–144. https://doi.org/10.1016/j.jtice.2015.04.007.
  • 19. Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. J. Colloid Interface Sci., 281, 68–79. DOI:10.1016/j.jcis.2004.08.082.
  • 20. Sukor, A., Azira, A. Z. A., & Husni, M. H. A. (2017). Determination of cation exchange capacity of natural zeolite: A revisit. Malaysian Journal of Soil Science, 21, 105–112. http://www.msss.com.my/.
  • 21. Siti, A., Anggraini, D., Nampira, Y., Rosika, R., Noviarti, N., & Nugroho, A. (2003). Selectivity of Lampung zeolite towards matrices cations generated from uranium fi ssion. Jurnal Zeolit Indonesia, 2(1), 9–14. (in Indonesian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-763a4cd8-2267-44da-9f32-e7f2737b4543
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.