PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-time simulation and experimental implementation of luenberger observer-based speed sensor fault detection of bldc motors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern control systems’ dependability, safety and efficiency have all been improved by studying fault-tolerant control systems (FTCS). FTCS techniques can typically be active or passive controls. The fault detection and diagnosis (FDD) method is used in this study’s active control branch to identify probable faults that could develop in the speed Hall sensors of brushless DC motors (BLDC). FDD methodologies can be categorised into two types, depending on the available data and the process involved: model-based methods and data-based methods. The proposed approach in this study explores the implementation of the Luenberger observer methodology as part of the model-based approach. The chosen methodology was practically implemented and subjected to experimental evaluation. The proposed observer relies on the residual signal, which displays the difference between the plant’s observed and estimated speed signals and serves as a failure alert for the entire system. Given the increasing demand for BLDC motors in various industrial control applications, including medical fields, automation and robotics, this particular motor was selected as a benchmark to thoroughly evaluate and validate the proposed method. The primary contribution of this paper lies in the real-time application of model-based sensor fault detection methods to BLDC motors. The efficiency of the suggested method is showcased through extensive MATLAB simulations, where the obtained results confirm the successful detection of faults with a high level of responsiveness. As a result, the project was successfully implemented in real-time, and the experimental results exhibited a close correlation with the simulated outcomes. This consistency between simulation and practical implementation validates the accuracy and reliability of the proposed methodology for detecting faults in the BLDC motor speed sensor. The results underscore the heightened reliability and safety attained by promptly and accurately detecting sensor faults during the operation of the motor.
Rocznik
Strony
144--157
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Engineering Sciences, University College of Science and Technology, Khan Younis Street, Kasba Tadla, Palestine
  • Department of Electrical Engineering, Islamic University of Gaza, Jamal Abdel Street, Al-Remal, Gaza, Gaza strip, Palestine
autor
  • Department of Electrical Engineering, University of Doha for Science and Technology, 24449-Arab League Street, Doha, Qatar
Bibliografia
  • 1. Gaeid, K.S. Fault Tolerant Control of Induction Motor. Modern Ap-plied Science. 2011 Aug 3,5(4).
  • 2. Macfos. Detailed Brushless DC Motor Working Principle and Applica-tions [Internet]. Robu.in | Indian Online Store | RC Hobby | Robotics. 2020. Available from: https://robu.in/brushless-dc-motor-working-principle-construction-applications/
  • 3. Brushless DC motor application, 8 BLDC Motor Application exam-ples. SONTIAN Auto Parts. 2021. Available from: https://sontianmotor.com/brushless-dc-motor-applications/
  • 4. Sova V, Chalupa J, Grepl R. Fault tolerant BLDC motor control for hall sensors failure. In: 2015 21st International Conference on Auto-mation and Computing (ICAC). IEEE 2015.
  • 5. Alkaya A. Novel data driven-based fault detection for electromechan-ical and process control systems. Cukurova University of Natural and applied sciences. 2012.
  • 6. Miljković D. Fault detection methods: A literature survey. Opatija: Proceedings of the 34th International Convention MIPRO. 2011; 750-755.
  • 7. Abed W. Robust Fault Analysis for Permanent Magnet DC Motor in Safety Critical Applications [Internet]. Plymouth University; 2015. Available from: http://dx.doi.org/10.24382/1328
  • 8. Li L. Robust fault detection and diagnosis for permanent magnet synchronous motors. The Florida State University; 2006.
  • 9. Gaied K. S, Ping H.W. Wavelet fault diagnosis and tolerant of induc-tion motor: A review. International Journal of Physical Sciences. 2011; 358-376.
  • 10. Isermann R, Ballé R. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice. 1997 May;5(5):709-19.
  • 11. Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance. 2006th ed. Berlin, Germany: Springer 2006.
  • 12. Skora M, Kowalski C.T. The influence of sensor faults on PM BLDC Motor Drive. In: 2015 International Conference on Electrical Drives and Power Electronics (EDPE). IEEE 2015.
  • 13. Tashakori A, Ektesabi M. A simple fault tolerant control system for hall effect sensors failure of BLDC Motor. In: 2013 IEEE 8th Confer-ence on Industrial Electronics and Applications (ICIEA). IEEE 2013.
  • 14. Zandi O, Poshtan J. Brushless DC motor bearing fault detection using hall effect sensors and a two-stage wavelet transform. In: 2017 Electrical Engineering (ICEE). Iranian Conference on. IEEE 2018.
  • 15. Allous M, Zanzouri N. Fault tolerant control of system with simultane-ous actuator and sensor faults. In: 2017 International Conference on Control, Automation and Diagnosis (ICCAD). IEEE 2017.
  • 16. Saoudi G, El Harabi R, Abdelkrim M. N. Graphical Linear Observers for Fault Detection: The DC Motor Case Study. In: 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13). IEEE; 2021.
  • 17. Al-Mutayeb Y, Almobaied M. Luenberger observer-based speed sensor fault detection of BLDC Motors. In: 2021 International Confer-ence on Electric Power Engineering – Palestine (ICEPE- P). IEEE 2021.
  • 18. Chan HL, Woo KT. Closed loop speed control of miniature brushless DC motors. J Autom Conr Eng [Internet]. 2015; 329-35. Available from: http://dx.doi.org/10.12720/joace.3.4.329-335.
  • 19. MOONS – moving in better ways! [Internet]. Moonsindustries.com. 2019. Available from: https://www.moonsindustries.eu/
  • 20. Oguntoyinbo O. PID control of brushless DC motor and robot trajec-tory planning simulation with MATLAB®/SIMULINK® Technology and Communication 2009 Acknowledgements [Internet]. Available from: https://www.theseus.fi/bitstream/handle/10024/7467/Oludayo%20Oguntoyinbo.pdf?sequence=1
  • 21. Aghaee M, Jalali AA. BLDC Motor Speed Control Based on MPC Sliding Mode Multi-Loop Control Strategy – Implementation on Matlab and Arduino Software. In: Electrical Engineering (ICEE), Ira-nian Conference on. IEEE 2018.
  • 22. Ridwan M, Yuniarto MN, Soedibyo. Electrical equivalent circuit-based modeling and analysis of brushless direct current (BLDC) motor. In: 2016 International Seminar on Intelligent Technology and Its Applica-tions (ISITIA) 2016.
  • 23. Horváth Z, Molnárka G. Design Luenberger Observer for an Electro-mechanical Actuator. Acta Technica Jaurinensis [Internet]. 2014; 7(4). http://dx.doi.org/10.14513/actatechjaur.v7.n4.313
  • 24. Sellami L. Simulink Model of a Full State Observer for a DC Motor Position, Speed, and Current. Proceedings of the International Con-ference on Modeling, Simulation and Visualization Methods (MSV) 2014; 1-6.
  • 25. Eissa MA, Ahmed MS, Darwish RR, Bassiuny AM. Model-based sensor fault detection to brushless DC motor using Luenberger ob-server. In: 2015 7th International Conference on Modelling, Identifica-tion and Control (ICMIC). IEEE 2015.
  • 26. Sadun AS, Jalani J, Sukor JA. A comparative study on the position control method of dc servo motor with position feedback by using Ar-duino. In: 2015 Proceedings of Engineering Technology International Conference (ETIC-2015). 10-11.
  • 27. Agrawal K, Gandhi A., Shah MT, Gojiya MV. Design, analysis and realization of SVPWM using embedded code generation technique for a three phase, two level inverter. 2016 International Conference on Electrical Power and Energy Systems (ICEPES); 2016.
  • 28. Megalingam RK, Vadivel SR, Pula BT, Reddy Sathi S, Gupta US. Motor Control Design for position measurement and speed control. In: 2019 International Conference on Communication and Signal Processing (ICCSP). IEEE 2019.
  • 29. Tibor B, Fedak V, Durovsky F. Modeling and simulation of the BLDC Motor in Matlab Gui. In: 2011 IEEE International Symposium on In-dustrial Electronics. IEEE 2011.
  • 30. Johansson M. Evaluation of Sensor Solutions & Motor Speed Control Methods for BLDCM/PMSM in Aerospace Applications [Internet]. 2017. https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61437
  • 31. Balogh L. Design and application guide for high speed MOSFET gate drive circuits. In: 2001 Power Supply Design Seminar SEM-1400. Topic (Vol.2).
  • 32. IR2110 datasheet(PDF) – international rectifier – Datasheet search site for Electronic Components and Semiconductors [Internet]. Available from: https://www.alldatasheet.com/datasheet-pdf/pdf/ 82793/IRF/IR2110.html
  • 33. Tahmid P. Using the high-low side driver ir2110 - explanation and plenty of example circuits [Internet]. Available from: http://tahmidmc.blogspot.com/2013/01/using-high-low-side-driver-ir2110-with.html
  • 34. Poovizhi M, Kumaran MS, Ragul P, Priyadarshini LI, Logambal R. Investigation of Mathematical Modelling of Brushless DC motor(bldc) drives by using MATLAB-Simulink. In: 2017 International Conference on Power and Embedded Drive Control (ICPEDC). IEEE 2017.
  • 35. Storr, W. ElectronicsTutorials. Hall effect sensor and how magnets make it works [Internet]. Basic Electronics Tutorials. 2018. Available from: https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html
  • 36. Farmen T, Zarchi M. Fault Diagnosis of an Electrical Winch based on Structural Analysis. University of Agder 2018.
  • 37. Frank PM, Ding SX, Marcu T. Model-based fault diagnosis in tech-nical processes. Transactions of the Institute of Measurement and Control [Internet]. 2000;22(1):57-101. Available from: http://dx.doi.org/10.1191/014233100676786880
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7636a4b3-724c-41e7-bad3-c2c28bea04ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.