PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości wykorzystania nanotechnologii i nanomateriałów w procesach uzdatniania wody i oczyszczania ścieków. Cz. I, Adsorpcja

Autorzy
Identyfikatory
Warianty tytułu
EN
Possibility of nanotechnology and nanomaterials application in water and wastewater treatment processes. Part. I, Adsorption
Języki publikacji
PL
Abstrakty
PL
Nano-adsorbenty ze względu na swoją wielkość i wysoki stosunek powierzchni do objętości wykazują unikalne właściwości w porównaniu z konwencjonalnymi sorbentami, a w ciągu ostatnich kilkudziesięciu lat zyskały duże zainteresowanie środowiska naukowego. Duża powierzchnia właściwa czyni nano-adsorbenty skutecznym narzędziem do oczyszczania wody i ścieków. W niniejszym przeglądzie podjęto próbę zaprezentowania możliwości zastosowania różnych typów nano-materiałów, takich jak metale i tlenki metali, nanorurki węglowe i grafen oraz różne nano-kompozyty polimerowe jako adsorbenty do usuwania metali ciężkich i anionów oraz substancji organicznych ze środowiska wodnego. Funkcjonalizacja nano-materiałów poprzez modyfikację chemiczną często zmienia charakter powierzchni nano-adsorbentów i znacznie poprawia zdolności adsorpcyjne.
EN
Nanomaterial adsorbents due to their size and high surface area to volume ratio exhibit unique properties in comparison with conventional ones and have gained significant attention of the scientific community in the last few decades. Large surface area makes nanomaterial adsorbents an effective tool for water and wastewater treatment. In this review, an attempt to the applicability of different types of nanomaterials, such as metals and metal oxides, carbon nanotubes and graphene, and various polymeric nanocomposites as adsorbents for removal of various heavy metals and organics from water environment is made. Functionalization by chemical modification often changes character of nanoadsorbents surface, and significantly improves adsorption abilities.
Czasopismo
Rocznik
Tom
Strony
4--10
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Polska Akademia Nauk. Instytut Podstaw Inżynierii Środowiska
Bibliografia
  • 1. Tian X., Sarkis J., Geng Y., Qian Y., Gao C., Bleischwitz R., Xu Y., Evolution of China’s water footprint and virtual water trade: a global trade assessment, Environ. Int., 121 (2018) 178–188.
  • 2. Madhura L., Singh S., Kanchi S., Sabela M., Bisetty K., Nanotechnology based water quality management for wastewater treatment, Environmental Chemistry Letters 17 (2018) 65-121.
  • 3. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B., Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  • 4. Lu F., Astruc D., Nanomaterials for removal of toxic elements from water, Coordination Chemistry Reviews, 356 (2018) 147–164.
  • 5. Kamali M., Persson K.M., Costa M.E., Capela I., Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: Current status and future outlook, Environment International, 125 (2019) 261–276.
  • 6. Sarma G.K., Gupta S.S., Bhattacharyya K.G., Nanomaterials as versatile adsorbents for heavy metal ions in water: a review, Environmental Science and Pollution Research, 26 (2019) 6245–6278.
  • 7. Das R., Hamid S.B.A., Ali E.M., Ismail A.F., Annuar M.S.M., Ramakrishna S., Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354 (2014) 160–179.
  • 8. Bodzek M., Konieczny K., Kwiecińska-Mydlak A., Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for manufacturing of next generation semipermeable membranes, Critical Reviews in Environmental Science and Technology, 50 (2020) 1515–1579.
  • 9. Ali I., New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  • 10. Khajeh M., Laurent S., Dastafkan K., Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media), Chem. Rev., 113 (2013) 7728–7768.
  • 11. Bodzek M., Konieczny K., Kwiecińska¬-Mydlak A. The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desalination and Water Treatment, 185, (2020) 1-26.
  • 12. Bodzek M., Konieczny K., Kwiecińska-Mydlak A., The application for nanotechonology and nanomaterials in water and wastewater treatment. Membranes, photocatalysis and disinfection, Desalination and Water Treatment, 186 (2020) 88–106.
  • 13. Lu F., Astruc D., Nanomaterials for removal of toxic elements from water, Coord. Chem. Rev., 356 (2018) 147–164.
  • 14. Gehrke I., Geiser A., Somborn-Schulz A., Innovations in nanotechnology for water treatment, Nanotechnology, Science and Applications, 8 (2015) 1–17.
  • 15. Pandey N., Shukla S.K., Singh N.B., Water purification by polymer nanocomposites: an overview, Nanocomposites, 3(2) (2017) 47-66.
  • 16. Tosco T., Papini P.M., Viggi C.C., Sethi R., Nanoscale zerovalent iron particles for groundwater remediation: a review, J. Clean. Prod., 77 (2014) 10–21.
  • 17. Xu P., Zeng G.M., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X., Liu Z.F., Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  • 18. Ramos M.A.V., Yan W., Li X.Q., Koel B.E., Zhang W.X., Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure, J. Phys. Chem. C, 113 (2009) 14591–14594.
  • 19. Nowack B., Krug H.F., Height M., 120 years of nanosilver history: implications for policy makers, Environ. Sci. Technol., 45 (2011) 1177–1183.
  • 20. Sondi I., Salopek-Sondi B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid. Interface Sci., 275 (2004) 177–182.
  • 21. Mohapatra M., Rout K., Gupta S.K., Singh P., Anand S., Mishra B.K., Facile synthesis of additive-assisted nano goethite powder and its application for flu¬oride remediation, J. Nanopart. Res., 12 (2009) 681–686.
  • 22. Shipley H.J., Engates K.E., Grover V.A., Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion, Environ. Sci. Pollut. Res. Int., 20 (2013) 1727–1736.
  • 23. Hu J., Chen G., Lo I.M., Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanism, J. Environ. Eng., 132 (2006), 709–715.
  • 24. Mak S.-Y., Chen D.-H., Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles, Dyes Pigments, 61 (2004), 93–98.
  • 25. Mercer K.L., Tobiason J.E., Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO, Environ. Sci. Technol., 42 (2008) 3797–3802.
  • 26. George R., Bahadur N., Singh N., Singh R., Verma A., Shukla A.K., Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap water, Mater. Today: Proc., 3 (2016) 162–166.
  • 27. Mani A.D., Reddy P.M.K., Srinivaas M., Ghosal P., Xanthopoulos N., Subrahmanyam C., Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI), Mater. Res. Bull., 61 (2015) 391–399.
  • 28. Fagan R., McCormack D.E., Dionysiou D.D., Pillai S.C., A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  • 29. Yang K., Xing B.S., Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application, Chemical Reviews, 110 (2010) 5989-6008.
  • 30. Chatterjee S., Lee M.W., Woo S.H., Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Biores. Technol., 101(2010) 1800–1806.
  • 31. Bazrafshan E., Mostafapour F.K., Hosseini AR., Raksh A.K., Mahvi A.H., Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J. Chem. Volume 2013 (2013) Article ID 938374, 8 pages.
  • 32. Hyung H., Kim J-H., Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters, Environ. Sci. Technol., 42 (2008) 4416–4421.
  • 33. Lu C., Chung Y-L., Chang K-F., Adsorption of trihalomethanes from water with carbon nanotubes, Water Res., 39 (2005) 1183–1189.
  • 34. Rao G.P., Lu C., Su F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif Technol., 58 (2007) 224–231.
  • 35. Anitha K., Namsani S., Singh J.K., Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study, J. Phys. Chem. A, 119 (2015) 8349–8358.
  • 36. Lu C., Chiu H., Bai H., Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon, Journal of Nanoscience and Nanotechnology, 7 (2007) 1647-1652.
  • 37. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R., Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans., 42 (2013) 5682–5689.
  • 38. Hur J., Shin J., Yoo J., Seo Y-S., Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents, The Scientific World Journal, (2015) Article ID 836287, 11 pages, https://doi. org/10.1155/2015/836287.
  • 39. Vasudevan S., Lakshmi J., The adsorption of phosphate by graphene from aqueous solution, RSC Adv., 2 (2012) 5234–5242.
  • 40. Zhang S., Shao Y., Liu J., Aksay I.A., Lin Y., Graphene-polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchange for removing ClO4 f rom wastewater, ACS Appl. Mater. Interfaces, 3 (2011) 3633–3637.
  • 41. Hartono T., Wang S., Ma Q., Zhu Z., Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  • 42. Liu F., Chung S., Oh G., Seo T.S., Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal, ACS Appl. Mater. Interfaces, 4 (2012 ) 922–927.
  • 43. Yu F., Ma J., Bi D., Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene, Environ. Sci. Pollut. Res. Int., 22 (2015) 4715–4724.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7628d161-09ce-4675-968c-9e0887acda5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.