PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

"Numerical Solution of SDRE Control Problem – Comparison of the Selected Methods"

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methods for solving non-linear control systems are still being developed. For many industrial devices and systems, quick and accurate regulators are investigated and required. The most effective and promising for nonlinear systems control is a State-Dependent Riccati Equation method (SDRE). In SDRE, the problem consists of finding the suboptimal solution for a given objective function considering nonlinear constraints. For this purpose, SDRE methods need improvement. In this paper, various numerical methods for solving the SDRE problem, i.e. algebraic Riccati equation, are discussed and tested. The time of computation and computational effort is presented and compared considering selected nonlinear control plants.
Rocznik
Strony
79--95
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Poznań University of Technology, Institute of Automation and Robotics
  • Higher State Vocational School in Leszno, Polytechnic Institute
  • The Jacob Paradyż Academy in Gorzów Wielkopolski
  • Poznań University of Technology, Institute of Automation and Robotics
Bibliografia
  • [1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," (1982), Proc. IEEE®, pp. 1746-1754.
  • [2] Banks, H.T., Lewis, B.M. and Tran, H.T., “Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach”, (2007), Computational Optimization and Applications, Vol. 37, No. 2, pp. 177-218.
  • [3] Geranmehr B., Vafaee K., Nekoo S.R., Finite-horizon servo SDRE for supermaneuverable aircraft and magnetically-suspended CMGs, (2016) Journal of Aerospace Engineering, Vol 230, pp 1075-1093.
  • [4] Cloutier, J.R. and Stansbery, D.T. (2001), “Nonlinear, hybrid bank-to-turn/skid-to-turn autopilot design”, Proceedings of the AIAA Guidance, Navigation, and Control Conference,Montreal, AIAA, Reston.
  • [5] Ҫimen T. “State-dependent Riccati equation (SDRE) control: a survey” (2008) In Proceedings of the 17th IFAC World Congress, 3761-3775.
  • [6] Erdem E.B. and Alleyne A.G. (1999), “Globally stabilizing second-order nonlinear systems by SDRE control”, Proceedings of the American Control Conference, San Diego, CA, IEEE, Los Alamitos.
  • [7] Feitzinger F., Hylla T., Sachs E.W., Inexact Kleinman-Newton Method for Riccati Equations, SIAM J. MATRIX ANAL. APPL., 2009, 272-288.
  • [8] Cloutier J.R., D’Souza C.N., Mracek C.P., Nonlinear regulation and nonlinear H, control via the state-dependent Riccati equation technique; part 1, theory; part 2, examples. (1996), In Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace. Available through University Press, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114.
  • [9] Morris K., Navasca C., “Iterative Solution of Algebraic Riccati Equations using a Modified Newton-Kleinman Method”, (2004), in Proc. Mathematical Theory of Networks and Systems.
  • [10] Korayem M.H. and Nekoo S.R. (2015), “Finite-time state-dependent Riccati equation for time-varying nonaffine systems: rigid and flexible joint manipulator control”, ISA Transactions, Vol. 54, pp. 125-144.
  • [11] Mracek C.P. and Cloutier J.R. (1998), “Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method”, International Journal of Robust and Nonlinear Control, Vol. 8, Nos 4/5, pp. 401-433.
  • [12] Park C., Scheeres D.J.: “Determination of optimal feedback terminal controllers for general boundary conditions using generating functions” (2006) , Automatica 42, 869-875.
  • [13] Palumbo N.F. and Jackson T. (1999), “Development of a fully integrated missile guidance and control system: a state-dependent Riccati differential equation approach”, Proceedings of the Conference on Control Applications, IEEE, HI, Los Alamitos.
  • [14] Pearson J.D. (1962), “Approximation methods in optimal control”, Journal of Electronics and Control, Vol. 13, No. 5, pp. 453-469.
  • [15] Menon P.K., Lam T., Crawford L.S., Cheng V.H.L., “Real-Time Computational Methods for SDRE Nonlinear Control of Missiles” (2002), Proc. of the 2002 American Control Conference.
  • [16] Shankar P., Yedavalli R.K., Doman D.B., “Dynamic inversion via state dependent Riccati equation approach: application to flight vehicles”,(2003), In AIAA Guidance, Navigation, and Control Conference and Exhibit, volume 5361. AIAA, Austin, Texas.
  • [17] Stepien S.J., Superczynska P., Dobrowolski D., Dobrowolski J., “SDRE-based high performance feedback control for nonlinear mechatronic systems”, (2019) Compel - The international journal for computation and mathematics in electrical and electronic engineering , Vol 38, No 4, pp. 1164-1176.
  • [18] Wernli A. and Cook G., “Suboptimal control for the nonlinear quadratic regulator problem”, Automatica, (1975), Vol. 11, No. 1, pp. 75-84.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7627d4a8-2ed2-446f-84b0-d7a46fe862d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.