PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd metod wytwarzania kawitacji do degradacji zanieczyszczeń organicznych w środowisku wodnym

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
A review of methods for formation of cavitation phenomena for degradation of pollutants in wastewater
Języki publikacji
PL
Abstrakty
PL
Zjawisko kawitacji może być przydatne w oczyszczaniu ścieków przemysłowych. Energia uwalniana w strumieniu cieczy, w momencie wytworzenia kawitacji może być wykorzystana do efektywnej degradacji zanieczyszczeń organicznych w fazie wodnej. W niniejszej pracy dokonano przeglądu wybranych metod wytwarzania zjawiska kawitacji hydrodynamicznej, jak i sono-kawitacji. W przypadku kawitacji hydrodynamicznej najczęściej w celu zapoczątkowania zjawiska generowania pęcherzy gazowych wykorzystuje się przewężenia kanałowe oraz kryzy. Sono-kawitacja jest wytwarzana za pomocą wzbudników ultradźwiękowych. Najwyższą efektywność utleniania związków organicznych osiąga się, stosując sono-kawitację (od 30 do 60% redukcji ładunku zanieczyszczeń).
EN
Cavitation can be used as a useful method for a pre-treatment of industrial wastewater. The energy supplied to the stream at the time of cavitation occurrence can be used for an effective degradation of organic pollutants in the aqueous phase. This paper presents a state of the art of methods of producing hydrodynamic and sono-cavitation. In the case of hydrodynamic cavitation most frequently to initiate the phenomenon of the cavities generation a Venturi tube or orifice are used. Sono-cavitation is produced by means of the ultrasonic transducers. The highest efficiency of oxidation of organic compounds is achieved using a sono-cavitation (30 to 60% reduction of pollutant).
Rocznik
Strony
62--71
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Technologii Polimerów, Gdańsk, Polska
autor
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Inżynierii Chemicznej i Procesowej, Gdańsk, Polska
Bibliografia
  • 1. Wu C. D., Zhang Z. L., Wu Y., Wang L., Chen L. J., Effects of operating parameters and additives on degradation of phenol in water by the combination of H2O2 and hydrodynamic cavitation, Desalin. Water Treat., 53, (2015), 462-468.
  • 2. Raut-Jadhav S., Kumar Saharan V., Pinjari D., Sonawane S., Saini D., Pandit A., Synergetic effect of combination of AOP’s (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide, J. Hazard. Mater., 261, (2013), 139-147.
  • 3. Moholkar V. S., Senthilkumar P., Pandit A. B., Hydrodynamic cavitation for sonochemical effects, Ultrason. Sonochem., 6, (1999), 53-65.
  • 4. Badve M. P., Bhagat M. N., Pandit A. B., Microbial disinfection of seawater using hydrodynamic cavitation, Sep. Purif. Technol., 151, (2015), 31-38.
  • 5. Petkovšek M., Mlakar M., Levstek M., Strazar M., Širok B., Dular M., A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration, Ultrason. Sonochem., 26, (2015), 408-414.
  • 6. Petkovšek M., Zupanc M., Dular M., Kosjek T., Heath E., Kompare B., Širok B., Rotation generator of hydrodynamic cavitation for water treatment, Sep. Purif. Technol., 118, (2013), 415-423.
  • 7. Jyoti K. K., Pandit A. B., Water disinfection by acoustic and hydrodynamic cavitation, Biochem. Eng. J., 7, (2001), 201-212.
  • 8. Ashrafizadeh S. M., Ghassemi H., Experimental and numerical investigation on the performance of small-sized cavitating venturis, Flow Meas. Instrum., 42, (2015), 6-15.
  • 9. Xiong Y., Peng F., Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Mining Sci. Tech., 25, (2015), 523-529.
  • 10. Ghassemi H., Fasih H. F., Application of small size cavitating venturi as flow controller and flowmeter, Flow Meas. Instrum., 22, (2011), 406-412.
  • 11. Song Y. L., Li J. T., Degradation of C.I. Direct Black 168 from aqueous solution by flyash/H2O2 combining ultrasound, Ultrason. Sonochem., 16, (2009), 440-444.
  • 12. Doktycz S. J., Suslick K. S., Interparticle collisions driven by ultrasound, Sonochemistry, Sci. 247, (1990), 1067-1069.
  • 13. Beckett M. A., Hua I., Elucidation of the 1,4-Dioxane Decomposition Pathway at Discrete Ultrasonic Frequencies, Environ. Sci. Technol., 34, (2000), 3944-3953.
  • 14. Gogate P. R., Cavitation: an auxiliary technique in wastewater treatment schemes, Adv. Env. Res., 6, (2002), 335-358.
  • 15. Raut-Jadhav S., Saini D., Sonawane S., Pandit A., Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution, Ultrason. Sonochem., 28, (2016), 283-293.
  • 16. Jain T., Carpenter J., Saharan V. K., CFD analysis and optimization of circular and slit venturi for cavitational activity, J. Mater. Sci. Mech. Eng., 1, (2014), 28-33.
  • 17. Bashir T. A., Soni A. G., Mahulkar A. V., Pandit A. B., The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng., 89, (2011), 1366-1375.
  • 18. Ulas A., Passive flow control in liquid-propellant rocket engines with cavitating venturi, Flow Meas. Instrum., 17, (2006), 94-97.
  • 19. Jain T., Carpenter J., Saharan V. K., CFD analysis and optimization of circular and slit venturi for cavitational activity, J. Mater. Sci. Mech. Eng., 1, (2014), 28-33.
  • 20. Materiały konferencyjne: Sivakumar M., Pandit A. B., Hydrodynamic Cavitation assisted Degradation of Rhodamine B: A Technologically viable Wastewater Treatment technique, International conference on Science and Technology under Chemical Society of Canada, October 12-13, 2000, New Delhi, Indie.
  • 21. Parsa J. B., Zonouzian S. A. E., Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: Application of scrap iron sheets, Ultrason. Sonochem., 20, (2013), 1442-1449.
  • 22. Bagal M. V., Gogate P. R., Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem., 20, (2013), 1226-235.
  • 23. Jung K., Hwang M., Yun Y., Cha M., Ahn K., Development of a novel electric field-assisted modified hydrodynamic cavitation system for disintegration of waste activated sludge, Ultrason. Sonochem., 21, (2014), 1635-1640.
  • 24. Badve M., Gogate P., Pandit A., Csoka L., Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry, Sep. Purif. Technol., 106, (2013), 15-21.
  • 25. Yan Y., Thorpe R. B., Flow regime transitions due to cavitation in the flow through an orifice, Int. J. Multiphase Flow, 16, (1990), 1023-1045.
  • 26. Gogate P. R., Cavitational reactors for process intensification of chemical processing applications: a critical review, Chem. Eng. Process., 47, (2008), 515-527.
  • 27. Shriwas A. K., Gogate P. R., Ultrasonic degradation of methyl Parathion in aqueous solutions: in tensification using additives and scale up aspects, Sep. Purif. Technol., 79, (2011), 1-7.
  • 28. Badve M. P., Alpar T., Pandit A. B., Gogate P. R., Csoka L., Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies, Ultrason. Sonochem., 22, (2015), 272-277.
  • 29. Petkovšek M., Mlakar M., Levstek M., Strazar M., Širok B., Dular M., A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration, Ultrason. Sonochem., 26, (2015), 408-414.
  • 30. Asgharzadehahmadi S., Raman A. A. A., Parthasarathy R., Sajjadi B., Sonochemical reactors: Review on features, advantages and limitations, Renew. Sustain. Energy. Rev., 63, (2016), 302-314.
  • 31. Neppolian B., Jung H., Choi H., Lee J. H., Kang J.-W., Sonolytic degradation of methyl tertbutylether: the role of coupled fenton process and persulphate ion, Water Res., 36, (2002), 4699-4708.
  • 32. Liu D., Vorobiev E., Savoire R., Lanoisellé J. L., Comparative study of ultrasound-assisted and conventional stirred dead-end microfiltration of grape pomace extracts, Ultrason. Sonochem., 20, (2013), 708-714.
  • 33. Lee I., Han J., The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production, Ultrason. Sonochem., 20, (2013), 1450-1455.
  • 34. Csoka L., Katekhaye S. N., Gogate P. R., Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations, Chem. Eng. J., 178, (2011), 384-390.
  • 35. Angaji M. T., Ghiaee R., Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process, Ultrason. Sonochem., 23, (2015), 257-265.
  • 36. Grcic I., Obradovic M., Vujevic D., Koprivanac N., Sono-Fenton oxidation of formic acid/formatens in an aqueous solution: from an experimental design to the mechanistic modeling, Chem. Eng. J., 164, (2010), 196-207.
  • 37. Patil P. N., Bote S. D., Gogate P. R., Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem., 21, (2014), 1770-1777.
  • 38. Zupanc M., Kosjek T., Petkovšek M., Dular M., Kompare B., Širok B., Strazar M., Heath E., Shearinduced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater, Ultrason. Sonochem., 21, (2014), 1213-1221.
Uwagi
PL
Praca naukowa finansowana w ramach programu Ministra Nauki i Szkolnictwa Wyższego pod nazwą „Iuventus Plus” w latach 2015-2017, nr projektu 0040/IP2/2015/73.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7626e795-b67e-4852-8ba6-8382ac628411
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.