Identyfikatory
Warianty tytułu
Studium przypadku zarysowania dwupoziomowego parkingu podziemnego
Języki publikacji
Abstrakty
This paper deals with the prevention of failure of structural elements made of reinforced concrete. It discusses preservice cracks in the concrete decks of an underground parking facility. The cracks were assessed by analyzing their morphology. The results were used to determine the crack causes and the mechanisms of their initiation and growth. Some design solutions to prevent or reduce the occurrence of pre-service cracks are also presented.
Przy realizacji budynku na drogim gruncie standardem jest wykonywanie kondygnacji podziemnych. Są one niezbędne chociażby ze względu na zapewnienie odpowiedniej liczby miejsc parkingowych. Niejednokrotnie zdarza się, że poziomy podziemne dochodzą do granic działki. Wymaga to zastosowania odpowiedniej technologii realizacji. Najczęściej w tym celu jest wykorzystywany zamknięty układ ścian szczelinowych. Przedsięwzięcia tego typu wymagają zarówno dobrych projektów jak i starannego wykonawstwa. Ich złożoność sprzyja powstawaniu różnego typu usterek. W artykule na stosownym przykładzie opisano jedną z możliwych. Dotyczy ona niepożądanego zarysowania podziemnych stropów parkingu ujawnionego tuż przed rozpoczęciem eksploatacji.
Czasopismo
Rocznik
Tom
Strony
79--97
Opis fizyczny
Bibliogr. 23 poz., il.
Twórcy
autor
- Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
autor
- Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
Bibliografia
- 1. H. Michalak, “Spatial and structural planning of underground garages on highly industrialized areas”, Warsaw Technical University Publishing, Architecture – 2, Warsaw 2006, (in Polish).
- 2. J. Ślusarczyk, “Identification and assessment of defects in a multi-storey car park”, Przegląd Budowlany No. 1/2011, 34-39, (in Polish).
- 3. PN-EN 1992-1-1:2008 Eurocode 2 – Design of concrete structures – Part 1-1: General rules and rules for buildings.
- 4. CEB-FIP fib. Model Code 2010, 2013.
- 5. J. Figura, R. Gralak, A commercial building with a basement car park. Inspection report on the causes of crack occurrence in structural elements of the basement levels (in Polish), Warszawa 2015.
- 6. K. Flaga, “The influence of concrete shrinkage on durability of reinforced structural members”, Bulletin of the Polish Academy of Sciences. Technical Sciences 63: 15-22, 2015.
- 7. B. Klemczak, A. Knoppik-Wróbel, “Analysis of early-age thermal and shrinkage stresses in reinforced concrete walls, ACI Structural Journal 111:313–322, 2014.
- 8. F.S. Rostàsy, M. Krauß, “Frühe Risse in massigen Betonbauteilen – Ingenieurmodelle für die Planung von Gegenmaßnahmen”, DAfStb Heft 512, Beuth Verlag GmbH, Berlin, 2001, (in Deutsch).
- 9. M. Szczecina, A. Winnicki, “Selected Aspects of Computer Modeling of Reinforced Concrete Structures”, Archives of Civil Engineering 62: 51–64, 2016.
- 10. B. Klemczak,“Modeling thermal-shrinkage stresses in early age massive concrete structures – Comparative study of basic models”, Archives of Civil and Mechanical Engineering 14: 721-733, 2014.
- 11. Solver Reference Manual, Version 14.7, Lusas, Kingston upon Thames, 2011.
- 12. P. G. Kossakowski, “Stress Modified Critical Strain criterion for S235JR steel at low initial stress triaxiality”, Journal of Theoretical and Applied Mechanics 52: 995–1006, 2014.
- 13. P. G. Kossakowski, “Microstructural failure criteria for S235JR steel subjected to spatial stress states”, Archives of Civil and Mechanical Engineering 15: 195–205, 2015.
- 14. J.Mazars, “A description of micro- and macroscale damage of concrete structures”, Engineering Fracture Mechanics 25: 729-737, 1986.
- 15. E. N. Landis, “Micro–macro fracture relationships and acoustic emissions in concrete”, Construction and Building Materials 13: 65-72, 1999.
- 16. J. O. Faria, M. Cervera, “A strain-based plastic viscous-damage model for massive concrete structures”, International Journal of Solids and Structures 35: 1533-1558,1998.
- 17. S. Yazdani, H. Schreyer, “Combined Plasticity and Damage Mechanics Model for Plain Concrete”, Journal of Engineering Mechanics 116: 1435-1450, 1990.
- 18. Z. P. Bazant, “Nonlocal damage theory based on micromechanics of crackinteraction”, Journal of Engineering Mechanics ASCE 120: 593–617, 1994.
- 19. P. G. Kossakowski, W. Wciślik, Experimental determination and application of critical void volume fraction fc for S235JR steel subjected to multi-axial stress state, in: T. Łodygowski, J. Rakowski, P. Litewka (Eds.), Recent Advances in Computational Mechanics, CRC Press/Balkema, London, 2014, pp. 303–309.
- 20. P. G. Kossakowski, W. Wciślik, “Effect of critical void volume fraction fF on results of ductile fracture simulation for S235JR steel under multi-axial stress states”, Key Engineering Materials – Fracture and Fatigue of Materials and Structures 598: 113–118, 2014.
- 21. J. L.Chaboche, P. M. Lesne, J. F. Maire, “Continuum Damage Mechanics, Anisotropy and Damage Deactivation for Brittle Materials Like Concrete and Ceramic Composites”, International Journal of Damage Mechanics 4: 5-22, 1995.
- 22. B. Vakhshouri, S. Nejadi, “Prediction Of Compressive Strength In Light-Weight Self-Compacting Concrete By ANFIS Analytical Model”, Archives of Civil Engineering 61: 53–72, 2015.
- 23. L. X. Xiong, “Uniaxial Dynamic Mechanical Properties Of Tunnel Lining Concrete Under Moderate-Low Strain Rate After High Temperature”, Archives of Civil Engineering 61: 35–52, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7624ffd2-d7d2-4deb-bfa0-78089f665091