PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coda wave interferometry for monitoring the fracture process of concrete beams under bending test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early detection of damage is necessary for the safe and reliable use of civil engineering structures made of concrete. Recently, the identification of micro-cracks in concrete has become an area of growing interest, especially when it comes to using wave-based techniques. In this paper, a non-destructive testing approach for the characterization of the fracture process was presented. Experimental tests were performed on concrete beams subjected to mechanical degradation in a 3-point bending test. Ultrasonic waves were registered on a specimen surface by piezoelectric transducers located at several points. Then, the signals were processed taking advantage of wave scattering due to micro-crack disturbances. For early-stage damage detection, coda wave interferometry was used. The novelty of the work concerns the application of the complex decorrelation matrix and the moving reference trace approach for better distinguishment of sensors located in different parts of a crack zone. To enhance coda wave-based damage identification results, optical imaging of crack development was performed by means of digital image correlation measurement. The results obtained showed that the coda wave interferometry technique can be successfully used as a quantitative measure of changes in the structure of concrete. The results also indicated that the course of decorrelation coefficient curves enabled the identification of three stages during degradation, and it depended on the location of acquisition points versus the crack zone.
Rocznik
Strony
art. no. e144118
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology,Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology,Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology,Narutowicza 11/12, 80-233, Gdańsk, Poland
Bibliografia
  • [1] S. Zamen and E. Dehghan-Niri, “Fractal analysis of nonlinear ultrasonic waves in phase-space domain as a quantitative method for damage assessment of concrete structures,” NDT E Int., vol. 111, p. 102235, 2020, doi: 10.1016/j.ndteint.2020.102235.
  • [2] J. Chakraborty, A. Katunin, P. Klikowicz, and M. Salamak, “Early crack detection of reinforced concrete structure using embedded sensors,” Sensors, vol. 19, no. 18, p. 3879, 2019, doi: 10.3390/s19183879.
  • [3] A. Deraemaeker and C. Dumoulin, “Embedding ultrasonic transducers in concrete: A lifelong monitoring technology,” Constr. Build. Mater., vol. 194, pp. 42–50, 2019, doi: 10.1016/j.conbuildmat.2018.11.013.
  • [4] M. Rucka, “Failure monitoring and condition assessment of steel-concrete adhesive connection using ultrasonic waves,” Appl. Sci., vol. 8, no. 3, p. 320, 2018, doi: 10.3390/app8030320.
  • [5] F. Moradi-Marani, P. Rivard, C.P. Lamarche, and S.A. Kodjo, “Evaluating the damage in reinforced concrete slabs under bending test with the energy of ultrasonic waves,” Constr. Build. Mater., vol. 73, pp. 663–673, 2014, doi: 10.1016/j.conbuildmat.2014.09.050.
  • [6] S. Lin, S. Shams, H. Choi, and H. Azari, “Ultrasonic imaging of multi-layer concrete structures,” NDT E Int., vol. 98, pp. 101–109, 2018, doi: 10.1016/j.ndteint.2018.04.012.
  • [7] Z.F. Tang, X.D. Sui, Y.F. Duan, P. Fei Zhang, and C.B. Yun, “Guided wave-based cable damage detection using wave energy transmission and reflection,” Struct. Control Heal. Monit., vol. 28, no. 5, p. e2688, 2021, doi: 10.1002/stc.2688.
  • [8] G. Vu, F. Diewald, J.J. Timothy, C. Gehlen, and G. Meschke, “Reduced order multiscale simulation of diffuse damage in concrete,” Materials, vol. 14, no. 14, p. 3830, 2021, doi: 10.3390/ma14143830.
  • [9] G. Vu, J.J. Timothy, D.S. Singh, L.A. Saydak, E.H. Saenger, and G. Meschke, “Numerical simulation-based damage identification in concrete,” Modelling, vol. 2, no. 3, pp. 355–369, 2021, doi: 10.3390/modelling2030019.
  • [10] C. Finger, L. Saydak, G. Vu, J.J. Timothy, G. Meschke, and E.H. Saenger, “Sensitivity of ultrasonic coda wave interferometry to material damage-observations from a virtual concrete lab,” Materials, vol. 14, no. 14, p. 4033, 2021, doi: 10.3390/ma14144033.
  • [11] E. Ahn, M. Shin, J.S. Popovics, and R.L. Weaver, “Effectiveness of diffuse ultrasound for evaluation of micro-cracking damage in concrete,” Cem. Concr. Res., vol. 124, p. 105862, 2019, doi: 10.1016/j.cemconres.2019.105862.
  • [12] G. Sang, S. Liu, and D. Elsworth, “Quantifying fatigue-damage and failure-precursors using ultrasonic coda wave interferometry,” Int. J. Rock Mech. Min. Sci., vol. 131, p. 104366, 2020, doi: 10.1016/j.ijrmms.2020.104366.
  • [13] N. Smagin, A. Trifonov, O. Bou Matar, and V.V. Aleshin, “Local damage detection by nonlinear coda wave interferometry combined with time reversal,” Ultrasonics, vol. 108, p. 106226, 2020, doi: 10.1016/j.ultras.2020.106226.
  • [14] E. Wojtczak, M. Rucka, and Ł. Skarżyński, “Monitoring the fracture process of concrete during splitting using integrated ultrasonic coda wave interferometry, digital image correlation and X-ray micro-computed tomography,” NDT E Int., vol. 126, p. 102591, 2022, doi: 10.1016/j.ndteint.2021.102591.
  • [15] H.J. Lim, H. Lee, T. Skinner, A. Chattopadhyay, and A. Hall, “Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry,” Struct. Control Heal. Monit., vol. 28, no. 3, p. e2689, 2021, doi: 10.1002/stc.2689.
  • [16] M. Rucka, E. Wojtczak, M. Knak, and M. Kurpi´nska, “Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation,” Constr. Build. Mater., vol. 280, p. 122522, 2021, doi: 10.1016/j.conbuildmat.2021.122522.
  • [17] J. Suchorzewski, M. Prieto, and U. Mueller, “An experimental study of self-sensing concrete enhanced with multi-wall carbon nanotubes in wedge splitting test and DIC,” Constr. Build. Mater., vol. 262, p. 120871, 2020, doi: 10.1016/j.conbuildmat.2020.120871.
  • [18] Ł. Skarżyński and J. Suchorzewski, “Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography,” Constr. Build. Mater., vol. 183, pp. 283–299, 2018, doi: 10.1016/j.conbuildmat.2018.06.182.
  • [19] B. Gencturk, K. Hossain, A. Kapadia, E. Labib, and Y.L. Mo, “Use of digital image correlation technique in full-scale testing of prestressed concrete structures,” Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 505–515, 2014, doi: 10.1016/j.measurement.2013.09.018.
  • [20] T.M. Fayyad and J.M. Lees, “Application of digital image correlation to reinforced concrete fracture,” Procedia Mater. Sci., vol. 3, pp. 1585–1590, 2014, doi: 10.1016/j.mspro.2014.06.256.
  • [21] D. Li et al., “Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology,” Eng. Fract. Mech., vol. 235, p. 107166, 2020, doi: 10.1016/j.engfracmech.2020.107166.
  • [22] G. Lacidogna, G. Piana, F. Accornero, and A. Carpinteri, “Multi-technique damage monitoring of concrete beams: Acoustic emission, digital image correlation, dynamic identification,” Constr. Build. Mater., vol. 242, p. 118114, 2020, doi: 10.1016/j.conbuildmat.2020.118114.
  • [23] Á.J. Molina-Viedma, L. Pieczonka, K. Mendrok, E. López-Alba, and F.A. Díaz, “Damage identification in frame structures using high-speed digital image correlation and local modal filtration,” Struct. Control Heal. Monit., vol. 27, no. 9, p. e2586, 2020, doi: 10.1002/stc.2586.
  • [24] X. Li, X. Chen, A. P. Jivkov, and J. Hu, “Investigation of tensile fracture of rubberized self-compacting concrete by acoustic emission and digital image correlation,” Struct. Control Heal. Monit., vol. 28, no. 8, p. e2744, 2021, doi: 10.1002/stc.2744.
  • [25] J. Singh and A. Curtis, “Estimating changes in velocity and source separation using coda wave interferometry: MATLAB code user guide,” 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-762125c6-fc47-43ba-9fc4-d7a1033bd7fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.