PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Declustering of Iran earthquake catalog (1983–2017) using the epidemic‑type aftershock sequence (ETAS) model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw > 4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.
Czasopismo
Rocznik
Strony
1359--1373
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
  • Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
autor
  • Department of Seismology, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
autor
  • Department of Statistics, Razi University, Kermanshah, Iran
Bibliografia
  • 1. Amini H (2014) Comparing Reasenberg and Gruenthal declustering methods for north of Iran. In Second European conference on earthquake engineering and seismology
  • 2. Bottiglieri M, Lippiello E, Godano C, de Arcangelis L (2009) Identification and spatiotemporal organization of aftershocks. J Geophys Res. https://doi.org/10.1029/2008JB005941
  • 3. Burkhard M, Grünthal G (2009) Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b). Swiss J Geosci 102(1):149–188
  • 4. Davis SD, Frohlich C (1991) Single-link cluster analysis, synthetic earthquake catalogs, and aftershock identification. Geophys J Int 104:289–306
  • 5. Frohlich C, Davis SD (1990) Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogs. Geophys J Int 100:19–32
  • 6. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  • 7. Gutenberg B, Richter CF (1944) Measurement error models. Bull Seismol Soc Am 34:185–188
  • 8. Hainzl S, Scherbaum F, Beauval C (2006) Estimating background activity based on interevent-time distribution. Bull Seismol Soc Am 96(1):313–320
  • 9. Huang WQ, LiWX Cao XF (1994) Research on the completeness of earthquake data in the Chinese mainland (I)North China. Acta Seismol Sin 7(3):351–359
  • 10. Jalilian A, Zhuang J (2016) ETAS: modeling earthquake data using ETAS model. R package version 0.2. https://CRAN.R-project.org/package=ETAS
  • 11. Kagan Y, Jackson D (1991) Long-term earthquake clustering. Geophys J Int 104(1):117–134
  • 12. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82(20):2981–2987
  • 13. Karimiparidari S, Zare M, Memarian H, Kijko A (2013) Iranian earthquakes, a uniform catalog with moment magnitudes. J Seismol 17(3):897–911
  • 14. Luen B, Stark PB (2012) Poisson tests of declusteredcatalogs. Geophys J Int 189(1):691–700
  • 15. Marsan D, Lengline O (2010) A new estimation of the decay of aftershock density with distance to the mainshock. J Geophys Res [Solid Earth]. https://doi.org/10.1029/2009JB007119
  • 16. Mirzaei N, Gao MT, Chen YT, Wang J (1997) A uniform catalog of earthquakes for seismic hazard assessment in Iran. Acta Seismol Sin 10(6):713–726. https://doi.org/10.1007/s11589-997-0003-5
  • 17. Molchan G, Dmitrieva O (1992) Aftershock identification: methods and new approaches. Geophys J Int 109:501–516
  • 18. Mousavi-Bafrouei SH, Mirzaei N, Shabani E (2015) A declustered earthquake catalog for the Iranian Plateau. Ann Geophy. https://doi.org/10.4401/ag-6395
  • 19. Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50(2):379–402
  • 20. Ommi S, Zafarani H, Zare M (2016) Aftershock decay rates in the Iranian plateau. Pure Appl Geophys 173(7):2305–2324 (Springer Basel Switzerland)
  • 21. Reasenberg P (1985) Second-order moment of central California seismicity. 1969–1982. J Geophys Res 90:5479–5495
  • 22. Savage WU (1972) Microearthquake clustering near fairview peak, Nevada, and in the Nevada seismic zone. J Geophys Res 77(35):7049–7056
  • 23. Shahvar MP, Zare M, Castellaro S (2013) A unified seismic catalog for the Iranian plateau (1900–2011). Seismol Res Lett 84(2):233–249
  • 24. Uhrhammer R (1986) Characteristics of northern and central California seismicity. Earthq Notes 57(1):21
  • 25. Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering, Community online resource for statistical seismicity analysis. https://doi.org/10.5078/corssa-52382934. Available at http://www.corssa.org
  • 26. Vere-Jones D (1970) Stochastic models for earthquake occurrence. J Roy Stat Soc: Ser B (Methodol) 32(1):1–62
  • 27. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002
  • 28. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382CrossRefGoogle Scholar
  • 29. Zafarani H, Soghrat M (2012) Simulation of ground motion in the Zagros region of Iran using the specific barrier model and the stochastic method. Bull Seismol Soc Am 102(5):2031–2045
  • 30. Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Asif Khan M, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772 (Springer)
  • 31. Zhuang J (2011) Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space 63(3):5 (Springer Japan)
  • 32. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380
  • 33. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res [Solid Earth]. https://doi.org/10.1029/2003JB002879
  • 34. Zhuang J, Ogata Y, Vere-Jones D (2006) Diagnostic analysis of space-time branching processes for earthquakes. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer. New York, NY, pp 275–292
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-761f6d88-962c-40b0-9fdb-d8406520c00d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.