
DOI 10.2478/ama-2024-0041                                                                                                                                                          acta mechanica et automatica, vol.18 no.3 (2024) 

367 

NEW SOLITARY WAVES FOR THIN-FILM FERROELECTRIC MATERIAL EQUATION  
ARISING IN DIELECTRIC MATERIALS 

Jalil MANAFIAN*/** , Walla Rahim JUADIH*** , Amitha Manmohan RAO**** , Baharak ESLAMI*****   

Natavan ALLAHVERDIYEVA****** , Parvin MUSTAFAYEVA*******  

*Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran 

**Natural Sciences Faculty, Lankaran State University, 50, H. Aslanov str., Lankaran, Azerbaijan 

***Computer Science Department, College of Education for Pure Sciences, University of Thi-Qar, Nasiriya, Iraq. 

****Department of Mathematics \& Statistics, N.S.S College of Commerce & Economics,  

University of Mumbai, Mumbai, Maharashtra, India 

*****Department of Physics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran 

******Sumgait State University, Sumgait, Azerbaijan 

*******Ganja State University, Haydar Aliyev Ave., 429, Ganja, Azerbaijan 

j_manafianheris@tabrizu.ac.ir, wallarahim85@gmail.com, amitha.m.rao@gmail.com, Bkeslami@pnu.ac.ir 
natavan.sdu@gmail.com, pervin.mustafayeva.81@mail.ru 

received 11 August 2023, revised 24 October 2023, accepted 3 November 2023 

Abstract: In this paper, the thin-film ferroelectric material equation (TFFME), which enables the propagation of solitary polarisation  
in thin-film ferroelectric materials is investigated, will be expressed through the non-linear evolution models. Ferroelectrics are dielectric 
materials that explain wave propagation non-linear demeanors. The non-linear wave propagation form is administrated by TFFME.  
To investigate the characterisations of new waves and solitonic properties of the TFFME, the modified exponential Jacobi technique  
and rational exp(−ϕ(η))-expansion technique are used. Plenty of alternative responses may be achieved by employing individual  

formulas; each of these solutions is offered by some plain graphs. The validity of such schemes and solutions may be exhibited  
by assessing how well the relevant schemes and solutions match up. The effect of the free variables on the manner of acting of reached 
plots to a few solutions in the exact forms was also explored depending upon the nature of non-linearities. The descriptive characteristics 
of the reached results are presented and analysed by some density, two- and three-dimensional figures. We believe that our results would 
pave the way for future research generating optical memories based on non-linear solitons. 

Key words: thin-film ferroelectric material equation, ferroelectrics are dielectric materials, modified exponential Jacobi method,          
                    rational exp(−ϕ(η))-expansion method, soliton solution  

1. INTRODUCTION 

Ferroelectric thin films have become a potential nominee in 
the field of ultraviolet photodetectors detection due to their wide 
bandgap and unique photovoltaic aspects. Additionally, ferroelec-
tric thin films perform excellent dielectric, piezoelectric, pyroelec-
tric, acousto-optic effects, etc. [1]. Xiao et al. [2] showed that the 
growth of ferroelectric layer on the original perovskite grains can 
reduce the formation of grain boundaries and hence minimise the 
recombination of electrons and holes at grain boundaries. The 
solitary wave dynamics of the thin-film ferroelectric material equa-
tion (TFFME) were investigated by Xiao et al. [2]. Umoh et al. [3] 
used nanoelectronic devices based on oxide films to require 
materials for exhibiting combined properties such as ferroelectrici-
ty, ferromagnetism and ferroelasticity at the same phase. An 
analysis of the thermal and ferroelectric properties of using a thin 
film in a transverse field extended for a higher spin within the 
quantum Monte Carlo method was provided by  Tarnaoui et al. 
[4]. Ferroelectric thin films have demonstrated great potential in 
electrocaloric solid-state refrigeration on account of large adia-
batic temperature changes [3]. Yang et al. [5] demonstrated a 

ferroelectric tunnel junction, whose conductivity varies linearly and 
symmetrically by judiciously combining ferroelectric domain 
switching and oxygen vacancy migration. The order parameter of 
ferrotoroidic order has been generated by a head-to-tail configura-
tion of magnetic moment and has been theoretically proposed that 
one-dimensional dimerised and antiferromagnetic (AFM)-like spin 
chain hosts ferrotoroidicity [6]. Through the Landau–Ginzburg–
Devonshire equation, the governing behaviour of the polarisation 
field in ferroelectric material was derived, and ferroelectric materi-
al is subjected to a standing electric field [7]. The modified simple 
equation method and the Riccati-Bernoulli Sub-ODE method were 
utilised for TFFME, which plays a vital role in optics to waves 
propagate through ferroelectric materials [8]. The optical soliton 
solutions of the thin-film ferroelectric materials equation through 
the Paul–Painlevé approach have been obtained [9]. In this paper, 
we are concerned with a wave polarisation for ferroelectric mate-
rials to the TFFME in one-dimensional form as follows:  

𝑚

𝑇2

∂2𝑢

∂𝑡2
− [(𝑝2 − 2𝜇)𝑢 + 𝑝4𝑢

3 + 𝑝6𝑢
5] − 𝐽Δ𝑢 = 0,     (1) 

where mass and charge density are m and T, p2, p4, p6 showing 

temperature and pressure. Also, J is related to the space inhomo-
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geneity coefficient and µ is the reciprocal of the electric suscepti-
bility [7]. In the last decades, researchers have developed numer-
ous methods. Gu et al. [10] investigated the generalised (2 + 1)-
dimensional shallow water wave equation, which enables a unidi-
rectional propagation of shallow water waves by using the bilinear 
method and semi-inverse variational principle scheme. Some 
novel analytical solutions, including 2-lump-type, the interaction 
between 2-lump and one kink, and other forms were obtained for 
the (3 + 1)-dimensional Burger system [11]. The modified auxiliary 
equation approach and the generalised projective Riccati equation 
method were used for the first time to solve the Zoomeron equa-
tion [12]. In paper [13], experts applied the bilinear method on 
models arising in variable coefficient Caudrey–Dodd–Gibbon–
Kotera–Sawada equation. In  paper [14], the third-order evolution 
equation was investigated by the Hirota bilinear method, which 
arises the propagation of long waves over shallow water. Rao et 
al. [15] studied the extended homoclinic breather wave solutions 
to the non-linear vibration and dispersive wave systems. The 
solutions of (3 + 1)-dimensional Burgers system via Lie symmetry 
analysis have been investigated by Alimirzaluo et al. [16]. In paper 
[17], Xiao at al. studied the inverse scattering transform for the 
coupled modified Korteweg–de Vries equation with non-zero 
boundary conditions. The cubic B-splines and linear triangular 
elements were used for a test problem including the motion of a 
single solitary solution of Benjamin–Bona–Mahony (BBM) equa-
tion coupled BBM-system by finite element method [18]. M-soliton 
and N-soliton solutions have been discovered for variable coeffi-
cient-generalised non-linear wave equation arising in liquid with 
gas bubbles [19]. Hirota’s bilinear operator has been used for the 
generalised Hietarinta equation [20] and to study the variable 
coefficients of generalised shallow water wave equation [21]. The 
exact solutions to the generalised non-linear Schrodinger equation 
by means of the extended sinh–Gordon equation expansion 

method, tan(Γ(ϖ))-expansion method and the improved 

cos(Γ(ϖ)) function method were obtained [22]. In paper [23], 
Singh and co-workers focussed on describing the evolution of 
water waves with higher order temporal dispersion by characteris-
ing the dynamics of lump and soliton waves on different spatially 
varying backgrounds to an integrable (3 + 1)-dimensional non-
linear model. Non-linear partial differential equations arise in many 
different branches of social and basic sciences and engineering. 
They have gained prominence in recent years due to their crucial 
role in a variety of domains involving complicated physical pro-
cesses, from control theory and electrical circuits to wave propa-
gation. Especially, they appear in electrodynamics of complex 
medium, electrical networks, signal and image processing, elec-
trodynamics, including porous flow, surface water flow, land slid-
ing, faulting, circled fuel reactor, wave motion and distribution, 
transmission lines. In order to compute these solutions and better 
understand the fundamental characteristics of physical structures 
in varied contexts, several authors have employed a variety of 
techniques. As a result, the analytical methods have been devel-
oped and it has been shown that no single technique can be used 
to solve all types of non-linear problems with precision. Therefore, 
many different methods have emerged, some of which are sub-
equation methods. High-dimensional partial differential equations 
have attracted academics’ curiosity greatly in recent years. They 
also appear in modelling many phenomena in biology, chemistry, 
physics, engineering, mechanics, economy and many different 
branches [24, 25, 26, 27]. Soliton theory is a very efficient and 
competent way to describe non-linear features. Soliton theory has 

two basic routes to study and explain non-linear features. Solitons 
have the most remarkable properties of particles and waves sim-
ultaneously that reflect non-linear features in a well-organised and 
competent way. To study nature by framing non-linear evolution 
equations, along with their soliton solutions is immediate and 
unquestionable. Solitons keep their velocities, shapes and ampli-
tudes unchanged even after interacting with others due to their 
perfectly elastic interaction. In this paper, some solutions including 
soliton, bright soliton, singular soliton, periodic wave solutions by 
the modified exponential Jacobi technique and rational 

exp(−ϕ(η))-expansion technique were also obtained. These 
good results show that the auxiliary methods are a powerful 
mathematical tool to handle non-linear integrable equations from 
nature. The complex integrable Kuralay governing system was 
offered to study the new auxiliary equation method for discovering 
multiple types of solitons [28]. Faridi et al. [29] studied the non-
linear integrable model, namely the generalised Kadomtsev–
Petviashvili modified equal width–Burgers equation, which utilised 
a weakly non-linear restoring forces, dispersion, small damping 
and non-linear media with dissipation to narrate the long wave 
propagation in chemical theory. Faridi et al. [30] analysed the 
dimensional elliptic non-linear Schrödinger equation under the 
influence of three different fractional operators and found the 
generalised fractional soliton solutions and propagation of magne-
tohydrodynamics fluid in sort of solition. The propagation of optical 
pulses in optical fibres and plasma has been examined for the 
Chen–Lee–Liu dynamical equation using the extended direct 

algebraic technique [31]. The combo of 
G′

G2
-expansion method and 

new extended direct algebraic method were used to find soliton 
solutions like periodic patterns with anti-peaked crests and anti-
troughs, singular solution and mixed complex solitary shock solu-
tion to the fractional TFFME [32]. The solitonic patterns of the 
considered model were successfully surveyed by using two inte-
grated analytical techniques, new extended direct algebraic and 
expansion method, to investigate the system of cold bosonic 
atoms in zig-zag optics lattices [33]. Chen and Li [34] constructed 
the optical soliton solutions of the well-known TFFME, which 
describes the propagation of polarisation in thin-film materials. 
The bifurcation, phase portrait and travelling wave solution of 
time-fractional TFFME with beta fractional derivative were studied 
[35]. The Zoomeron model was applied to various types of soli-
tons arising in fluid mechanics, laser optics and non-linear physics 
[36]. New optical soliton solutions for the coupled conformable 
Fokas–Lenells equation with spatio-temporal dispersion were 
obtained via Atangana’s derivative operator [37]. The resonant 
non-linear Schrödinger equation with Kerr law non-linearity con-
sidering inter-modal dispersion and spatio-temporal was investi-
gated using the new extended direct algebraic method [38]. The 
variational iterative method with the Laplace transform was used 
to solve non-linear evolution problems of a simple pendulum and 
mass-spring oscillator, which represents the Duffing equation [39]. 
The natural decomposition method and Laplace decomposition 
method were studied to solve the second-order Painlevé equation 
[40]. An optimal Galerkin-homotopy asymptotic method was ap-
plied to the non-linear second-order boundary value problems 
(BVPs) [41]. An analytical analysis to solve the fractional differen-
tial equations has been offered by  Manafian and Allahver-
diyeva [42]. Different forms of optical soliton solutions to the 
Kudryashov’s quintuple self-phase modulation were obtained by Li 
et al. [43]. New soliton solutions to the Van der Waals model 
through the improved exp(−Ω)-expansion method (IEFM) and 
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extended sinh-Gordon equation expansion method (EShGEEM) 
were attained [44]. Researchers worked on the network govern-
ance step-by-step method [46] and the neural network method 
[47]. Based on the invariant subspace method, the Lie symmetries 
including Riemann–Liouville and Erdelyi–Kober fractional deriva-
tives of the time-fractional form of the Gardner equation have 
been studied [48]. Numerical analysis of bioconvective heat and 
mass transfer across a non-linear stretching sheet with hybrid 
nanofluids was investigated by Aneja et al. [49]. Inspired by the 
previous work, the motivation of the paper is to investigate the 
solitons and other forms of solutions by the modified exponential 

Jacobi technique and rational exp(−ϕ(η))-expansion tech-
nique. The outline of the paper is as follows. In Section 2, we 
transform the thin-film ferroelectric material (TFFM) equation to a 
non-linear equation of the non-linear ordinary differential equation. 
Furthermore, in Sections 3–6, different forms of solitary wave 
solutions have been established by the modified exponential 

Jacobi method (MEJM) and rational exp(−ϕ(η))-expansion 
method. Finally, the conclusions are provided in Section 7. 

2. TRANSFORMING PDE TO ODE 

For Eq. (1), x, t show the longitudinal and transverse coordi-
nates. Using the next wave transformation, u(x, t) = u(η), η =
x − λt, where λ is arbitrary constants to be determined through 
the method’s steps, leads to the ODE as follows: 

∂2𝑢

∂𝑡2
= 𝜆2

𝑑2𝑢

𝑑𝜂2
,      𝐽Δ𝑢 = 𝐽

∂2𝑢

∂𝑥2
= 𝐽

𝑑2𝑢

𝑑𝜂2
,    4𝑐𝑚 (2) 

By substituting 
d2u

dη2
= u′′ and simplifying Eq. (2), we get,  

(
𝑚𝜆2

𝑇2
− 𝐽)𝑢′′ − [(𝑝2 − 2𝜇)𝑢 + 𝑝4𝑢

3 + 𝑝6𝑢
5 = 0, (3) 

where wave speed is denoted by λ. By using the balance principle 

to the terms of Eq. (4) between ψ′′ and ψ5 we get k + 2 = 5k, 

which leads to k = 1/2. By utilising the transformation u(η) =

√ψ(η) in Eq. (3) once, with respect to η and zero-integration 

constant, leads to  

(
𝑚𝜆2

𝑇2
− 𝐽) (−

1

4
𝜓′2 +

1

2
𝜓𝜓′′) − (𝑝2 − 2𝜇)𝜓

2 − 𝑝4𝜓
3 −

𝑝6𝜓
4 = 0.  (4) 

Deponing up the balance principle to the terms of Eq. (4) be-

tween ψ′′ and ψ4, we get k = 1. 

3. THE MEJM 

This part introduces the general properties of a new MEJM, 
which has been proposed by Aldhabani et al. [45]. The necessary 
steps for using this method are summarised as follows. Handling 
the inquired into model through the MEJM gets the following steps 
as mentioned earlier:  

 Step 1.  

𝒮1(𝐹, 𝐹𝑥, 𝐹𝑡 , 𝐹𝑥𝑥 , 𝐹𝑡𝑡 , . . . ) = 0,     (5) 

 where 𝒮 is a polynomial of F and its partial derivatives.  
 Step 2. Firstly, by utilising travelling wave transformation,  

𝜉 = 𝑥 − 𝜆𝑡,     (6) 

where λ is the non-zero arbitrary value, allows to diminish Eq. (61) 

to an ODE of F = F(ξ) in the below form  

𝒮2(𝐹, 𝐹′, −𝜆𝐹′, 𝐹′′, 𝜆
2𝐹′′, . . . ) = 0.     (7) 

Step 3. The generated solutions of Eq. (61) are:  

𝐹(𝜉) = 𝐴0 + ∑  𝑎
𝑖=1 𝐴𝑖 (

Ω′(𝜉)

Ω(𝜉)
)
𝑖

+ ∑  𝑎
𝑖=1 𝐵𝑖 (

Ω(𝜉)

Ω′(𝜉)
)
𝑖

,      (8) 

where Ω′(𝜉) = 𝑑Ω(𝜉)/𝑑𝜉 and  

Ω(𝜉) =
𝜎1𝑐𝑛(𝜉,𝑘)+𝜎2𝑠𝑛(𝜉,𝑘)

𝜎3𝑐𝑛(𝜉,𝑘)+𝜎4𝑠𝑛(𝜉,𝑘)
,    5.9 𝑐𝑚 (9) 

where cn(ξ, k) and sn(ξ, k) are the Jacobi elliptic functions of 

index, k, and we obtain a few interesting and important relation-
ships as follows: 

𝑠𝑛2(𝜉, 𝑘) = 1 − 𝑐𝑛2(𝜉, 𝑘),     (10)  

𝑑𝑛2(𝜉, 𝑘) = 1 − 𝑠𝑛2(𝜉, 𝑘),      

𝑑

𝑑𝜉
𝑐𝑛(𝜉, 𝑘) = −𝑠𝑛(𝜉, 𝑘)𝑑𝑛(𝜉, 𝑘),      

𝑑2

𝑑𝜉2
𝑐𝑛(𝜉, 𝑘) =

−𝑐𝑛(𝜉, 𝑘)𝑑𝑛2(𝜉, 𝑘) + 𝑘𝑐𝑛(𝜉, 𝑘)𝑠𝑛2(𝜉, 𝑘),      

𝑑3

𝑑𝜉3
𝑐𝑛(𝜉, 𝑘) =

−𝑘2𝑑𝑛(𝜉, 𝑘)𝑠𝑛3(𝜉, 𝑘) + 4𝑘2𝑐𝑛2(𝜉, 𝑘)𝑠𝑛(𝜉, 𝑘)𝑑𝑛(𝜉, 𝑘) +

𝑠𝑛(𝜉, 𝑘)𝑑𝑛3(𝜉, 𝑘),       

𝑠𝑛(𝜉, 0) = sin(𝜉),    𝑐𝑛(𝜉, 0) = cos(𝜉),    𝑑𝑛(𝜉, 0) = 1,  

𝑠𝑛(𝜉, 1) = tanh(𝜉),    𝑐𝑛(𝜉, 1) = 𝑠𝑒𝑐ℎ(𝜉),    𝑑𝑛(𝜉, 1) =

𝑠𝑒𝑐ℎ(𝜉).  

By utilising the balance tenet on Eq. (63), we can discover the 
value of a.  

 Step 4. Substituting Eq. (9) in Eq. (63) and collecting the co-

efficients of disparate orders in terms of cn(ξ, k), sn(ξ, k) and 
dn(ξ, k) make a set of non-linear algebraic equations.  

 Step 5. In the next step, we solve the non-linear algebraic 
equations and get the needed results. 

4. APPLICATION OF MEJM 

It can be seen that the above governing differential equation is 
highly non-linear, and such non-linearity imposes some difficulties 
in the development of exact analytical techniques to generate 
closed-form solutions for the equation. Therefore, a modified 
exponential Jacobi scheme is used in this work. The MEJM, which 
is an analytical scheme for providing analytical solutions to non-
linear ordinary differential equations, is adopted.  Upon construct-
ing the transformation and a new function, the following categories 
of solutions can be expressed: 

The set of categories of solutions: 

4.1. Set I  

𝐽 = −
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

3𝑇2
, 𝐴0 = (−1 + √−𝑘

2 + 1)𝐴1,    

𝑝2 = −
4

3
 𝐴1

2𝑝6(𝑘
2 + 3 √1 − 𝑘2 − 2) + 2 𝜇,   (11) 
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𝐴1 = 𝐴1,    𝐵1 = 0, 𝑝4 = −
8

3
(−1 + √−𝑘2 + 1)𝐴1𝑝6,

𝜎2 = 𝜎3 = 0,        

𝜓1 =
𝐴1((−1+√−𝑘

2+1)(𝑠𝑛(𝜉,𝑘))
2
−𝑑𝑛(𝜉,𝑘))

𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)
,  

𝐴1 =
9 𝑝4+√−192 𝑘

2𝑝2𝑝6+384 𝑘
2𝑝6−192 𝑝2𝑝6+81 𝑝4

2+384 𝑝6

16𝑝6(𝑘
2+1)

.    

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {

9 𝑝4+√−192 𝑘
2𝑝2𝑝6+384 𝑘

2𝑝6−192 𝑝2𝑝6+81 𝑝4
2+384 𝑝6

16𝑝6(𝑘
2+1)

((−1+√−𝑘2+1)(𝑠𝑛(𝜉,𝑘))
2
−𝑑𝑛(𝜉,𝑘))

𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)
}

1

2

,                                        (12) 

𝜉 = 𝑥 −
√3𝑇

3𝑚
√𝑚(

(9 𝑝4+√−192 𝑘
2𝑝2𝑝6+384 𝑘

2𝑝6−192 𝑝2𝑝6+81 𝑝4
2+384 𝑝6)

2

64 𝑝6(𝑘
2+1)2

+ 3 𝐽)  𝑡.  

Some subgroups for relation (12):  
Supposing k = 0 in Eq. (12) provides  

𝑢2(𝑥, 𝑡) = {
−
9 𝑝4+√−192 𝑝2𝑝6+81 𝑝4

2+384 𝑝6

16𝑝6

sin(𝜉)cos(𝜉)
}

1

2

,         (13) 

𝜉 = 𝑥 −
√3𝑇

3𝑚
√𝑚(

(9 𝑝4+√−192 𝑝2𝑝6+81 𝑝4
2+384 𝑝6)

2

64 𝑝6
+ 3 𝐽)  𝑡.  

Supposing k = 1 in Eq. (12) yields  

𝑢3(𝑥, 𝑡) =

{

9 𝑝4+√−192𝑝2𝑝6+384𝑝6−192 𝑝2𝑝6+81 𝑝4
2+384 𝑝6

32𝑝6
(−(tanh(𝜉))

2
−𝑠𝑐𝑒ℎ(𝜉))

tanh(𝜉)𝑠𝑒𝑐ℎ(𝜉)
}

1

2

,  

(14) 

𝜉 = 𝑥 −
√3𝑇

3𝑚
√𝑚(

(9 𝑝4+√−384 𝑝2𝑝6+81 𝑝4
2+768 𝑝6)

2

256 𝑝6
+ 3 𝐽)  𝑡.  

The effect of analysis periodic solution when plots of u are 
given as in Fig. 1 with the following amounts:  

𝑝2 = 1, 𝑝4 = 2, 𝑝6 = 3,𝑚 = 2, 𝑇 = 3,  

𝜇 = 2, 𝐽 = 2, 𝑘 = 0,  (15) 

𝑢 = √
1

sin(3 √3𝑡−𝑥)cos(3 √3𝑡−𝑥)
. (16) 

for Eq. (16). We investigate the behaviour of general periodic and 
the periodic received from the mentioned technique, which is 
presented in Fig. 1. From the graph,  it is ostensible that the peri-
odic structure exhibits a stable propagation for the generalised 
non-local non-linearity as offered in Fig. 1. Also, the effect of 

analysis of the periodic solution when plots of u are given in Fig. 2 
with the following amounts  

𝑝2 = 1, 𝑝4 = 2, 𝑝6 = 3,𝑚 = 2,  

𝑇 = 3, 𝜇 = 2, 𝐽 = 2, 𝑘 = 1,                               (17) 

𝑢 = 1/24 √−
(108+36 √41)(tanh(𝜁)𝑠𝑒𝑐ℎ𝜁−s𝑒𝑐ℎ(𝜁))

tanh(𝜁)s𝑒𝑐ℎ(𝜁)
,        

𝜁 =
√3√6 (18+6 √41)

2
+27648𝑡

96
− 𝑥. (18) 

for Eq. (18). 
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Fig. 1.   Plots of real solution (16) (a [3D plot], b [density plot], c [contour   

plot], d [2D plot]) for Graph 𝑢1 

 

 

    

  

Fig. 2.   Plots of real solution (18) (a [3D plot], b [density plot], c [contour 
plot], d [2D plot]) for Graph 𝑢2 
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4.2. Set II 

𝐽 = −1/3 
−3 𝑘4𝜆2𝑚+4 𝑇2𝐵1

2𝑝6

𝑇2𝑘4
,

𝐴0 =
(−1+√−𝑘2+1)𝐵1

𝑘2
,    
𝐴 1

= 0,  (19) 

𝐵1 = 𝐵1, 𝑝4 = −8/3 
(−1+√−𝑘2+1)𝐵1𝑝6

𝑘2
,    𝜎2 = 𝜎3 = 0,      

 

𝑝2 = −2/3 
2 𝐵1

2𝑝6(𝑘
4−10 𝑘2+10)−3 𝑘6𝜇+2 √−𝑘2+1(−3 𝑘4𝜇+5 𝑘2𝐵1

2𝑝6−10 𝐵1
2𝑝6)+6 𝑘

4𝜇

𝑘4(𝑘2+2 √−𝑘2+1−2)
,  

𝜓1 =
𝐵1

𝑑𝑛(𝜉,𝑘)
(
(−1+√−𝑘2+1)𝑑𝑛(𝜉,𝑘)

𝑘2
− 𝑠𝑛(𝜉, 𝑘)𝑐𝑛(𝜉, 𝑘)).  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) =

{
𝐵1

𝑑𝑛(𝜉,𝑘)
(
(−1+√−𝑘2+1)𝑑𝑛(𝜉,𝑘)

𝑘2
− 𝑠𝑛(𝜉, 𝑘)𝑐𝑛(𝜉, 𝑘))}

1

2

,     (20) 

𝜉 = 𝑥 −
√3√𝑚(3 𝐽𝑘4+4 𝐵1

2𝑝6)𝑇

3𝑚𝑘2
 𝑡.  

Some subgroups for relation (20):  
Supposing k = 1 in Eq. (20) provides  

𝑢2(𝑥, 𝑡) = {𝐵1 [−1 − tanh(𝑥 −
√3√𝑚(4 𝐵1

2𝑝6+3 𝐽)𝑇

3𝑚
𝑡)]}

1

2

. 

 (21) 

4.3. Set III 

𝐽 = −1/3 
−3 𝑘4𝜆2𝑚+4 𝑇2𝐵1

2𝑝6

𝑇2𝑘4
,    

𝐴0 =
(−1+√−𝑘2+1)𝐵1

𝑘2
,    𝐴1 = 0,  (22) 

𝐵1 = 𝐵1, 𝑝4 = −8/3 
(1+√−𝑘2+1)𝐵1𝑝6

𝑘2
,    𝜎2 = 𝜎3 = 0,      

𝑝2 = 2/3 
−2 (1+√−𝑘2+1)(−3 𝑘4𝜇+5 𝑘2𝐵1

2𝑝6−10 𝐵1
2𝑝6)−(3 𝑘

4𝜇−2 𝑘2𝐵1
2𝑝6+10 𝐵1

2𝑝6)𝑘
2

𝑘4(−𝑘2+2 √−𝑘2+1+2)
,  

𝜓1 =
𝐵1

𝑑𝑛(𝜉,𝑘)
(
(1+√−𝑘2+1)𝑑𝑛(𝜉,𝑘)

𝑘2
− 𝑠𝑛(𝜉, 𝑘)𝑐𝑛(𝜉, 𝑘)).    

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) =

{
𝐵1

𝑑𝑛(𝜉,𝑘)
(
(1+√−𝑘2+1)𝑑𝑛(𝜉,𝑘)

𝑘2
− 𝑠𝑛(𝜉, 𝑘)𝑐𝑛(𝜉, 𝑘))}

1

2

,       (23) 

𝜉 = 𝑥 −
√3√𝑚(3 𝐽𝑘4+4 𝐵1

2𝑝6)𝑇

3𝑚𝑘2
 𝑡.    

Some subgroups for relation (23):  

Supposing k = 1 in Eq. (23) provides  

𝑢2(𝑥, 𝑡) =  

{
𝐵1

𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)
(𝑠𝑒𝑐ℎ(𝑥 − 𝜆𝑡) − tanh(𝑥 − 𝜆𝑡)𝑠𝑒𝑐ℎ(𝑥 − 𝜆𝑡))}

1

2
   

𝜆 =
√3√𝑚(3 𝐽+4 𝐵1

2𝑝6)𝑇

3𝑚
.   (24) 

4.4. Set IV 

𝐽 = −1/3 
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

𝑇2
, 𝐴0 = 2 𝐴1,    𝐵1 = 𝑘2𝐴1,   (25) 

𝑝2 = −4/3 𝐴1
2𝑘2𝑝6 +

20 𝐴1
2𝑝6

3
+ 2 𝜇,   

𝑝4 = −16/3 𝐴1𝑝6, 𝜎2 = 𝜎3 = 0,      𝐴1 = −4 
2 𝜇−𝑝2

𝑝4(𝑘
2−5)

,   

 𝜓1 = −4 
(2 𝜇−𝑝2)((𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

,  

𝜉 = 𝑥 − 1/3 
√3𝑇

𝑚
√𝑚 (3 

2 𝜇−𝑝2

𝑘2−5
+ 3 𝐽)  𝑡.  

As a result the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) =

{−4 
(2 𝜇−𝑝2)((𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

,    (26)  

𝜉 = 𝑥 −
√3𝑇

3𝑚
√𝑚(3 

2 𝜇−𝑝2

𝑘2−5
+ 3 𝐽)  𝑡.   

Some subgroups for relation (26):  

Supposing k = 0 in Eq. (26) provides  

𝑢2(𝑥, 𝑡) = {4 
(2 𝜇−𝑝2)(2 sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)−1)

5𝑝4sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)
}

1

2
,      

𝜆 =
√3𝑇

3𝑚
√𝑚(3 𝐽 − 3 

2 𝜇−𝑝2

5
).           (27) 

 
Supposing k = 1 in Eq. (26) supplies  

𝑢3(𝑥, 𝑡) =

{
(2 𝜇−𝑝2)((tanh(𝑥−𝜆𝑡))

4
+2 tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ2(𝑥−𝜆𝑡)−1)

𝑝4tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ
2(𝑥−𝜆𝑡)

}

1

2

,    (28) 

𝜆 =
√3𝑇

3𝑚
√𝑚(3 𝐽 − 3 

2 𝜇−𝑝2

4
).   
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The effect of analysis periodic solution when plots of u are 
given in Fig. 3 with the following amounts  

𝑝2 = 5, 𝑝6 = 1,𝑚 = 2, 𝑇 = 3,   

𝜇 = 2, 𝐽 = 2, 𝑘 = 0,    (29) 

𝑢 =
√10

10
√2 

√15(−1−sin(3/5 √110𝑡−𝑥))

sin(3/5 √110𝑡−𝑥)((cos(3/10 √110𝑡−𝑥))
2
+(sin(3/10 √110𝑡−𝑥))

2
)
,        (30) 

for Eq. (30). We investigate the behaviour of general periodic and 
periodic received from the mentioned technique, which is present-
ed in Fig. 3. From the graph, it is ostensible that the periodic 
structure exhibits a stable propagation for the generalised non-

local non-linearity as offered in Fig. 3. Also, the effect of analysis 

periodic solution when plots of u are given in Fig. 4 with the fol-
lowing amounts  

𝑝2 = 5, 𝑝6 = 1,𝑚 = 2, 𝑇 = 3, 𝜇 = 2, 𝐽 = 2, 𝑘 = 1, (31) 

𝑢 = 1/2 √
√3((tanh(9/4 √2𝑡−𝑥))

4
−2 tanh(9/4 √2𝑡−𝑥)(𝑠𝑒𝑐ℎ(9/4 √2𝑡−𝑥))

2
−1)

tanh(9/4 √2𝑡−𝑥)(𝑠𝑒𝑐ℎ(9/4 √2𝑡−𝑥))
2 ,                       (32) 

for Eq. (32). 

 

 

 

  

Fig. 3.   Plots of real solution (30) (a [3D plot], b [density plot], c [contour 
plot], d [2D plot]) for Graph 𝑢1.  
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Fig. 4.   Plots of real solution (32) (a [3D plot], b [density plot], c [contour 
plot], d [2D plot]) for Graph 𝑢2 

4.5. Set V  

𝐽 = −
1

3

4 𝑇2𝐴1
2𝑝6−3 𝜆

2𝑚

𝑇2
, 𝐴0 = −2 𝐴1,    𝐵1 = 𝑘

2𝐴1, (33) 

𝑝2 = −4/3 𝐴1
2𝑘2𝑝6 +

20 𝐴1
2𝑝6

3
+ 2 𝜇,    𝑝4 = 16/3 𝐴1𝑝6,

𝜎2 = 𝜎3 = 0,      𝐴1 = 4 
2 𝜇−𝑝2

𝑝4(𝑘
2−5)

,  

𝜓1 = 4 
(2 𝜇−𝑝2)(−(𝑠𝑛(𝜉,𝑘))

4
𝑘2+1+2 𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = 

{4 
(2 𝜇−𝑝2)(−(𝑠𝑛(𝜉,𝑘))

4
𝑘2+1+2 𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

.       (34) 

Some subgroups for relation (34):  

Supposing k = 0 in Eq. (34) yields  

𝑢2(𝑥, 𝑡) = {−4 
(2 𝜇−𝑝2)(2 sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)+1)

5𝑝4sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)
}

1

2
. (35) 

 Supposing k = 1 in Eq. (34) yields  

𝑢3(𝑥, 𝑡) =

{−
(2 𝜇−𝑝2)(−(tanh(𝑥−𝜆𝑡))

4
+2 tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ2(𝑥−𝜆𝑡)+1)

𝑝4tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ
2(𝑥−𝜆𝑡)

}

1

2

. (36) 

4.6. Set VI 

𝐽 = −1/3 
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

𝑇2
, 𝐴0 = 2𝑘 𝐴1,    𝐵1 = 𝑘

2𝐴1,    (37) 

𝑝2 = 4/3 𝐴1
2𝑝6(5 𝑘

2 − 1) + 2 𝜇,    𝑝4 = −16/3𝑘 𝐴1𝑝6,

𝜎2 = 𝜎3 = 0,      𝐴1 = 4 
(2 𝜇−𝑝2)𝑘

𝑝4(𝑘
2−5)

,   

𝜓1 = 4 
(2 𝜇−𝑝2)𝑘((𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

.  
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As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) =

{4 
(2 𝜇−𝑝2)𝑘((𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

. (38) 

Some subgroups for relation (38):  

Supposing k = 1 in Eq. (38) provides  

𝑢2(𝑥, 𝑡) =

{−
(2 𝜇−𝑝2)((tanh(𝑥−𝜆𝑡))

4
+2 tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ2(𝑥−𝜆𝑡)−1)

𝑝4tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ
2(𝑥−𝜆𝑡)

}

1

2

. (39) 

 The effect of analysis soliton solution when plots of u are giv-
en in Fig. 5 with the following amounts  

𝑝2 = 5, 𝑝6 = 1,𝑚 = 2, 𝑇 = 3, 𝜇 = 2, 𝐽 = 2, 𝑘 = 1,  (40) 

𝑢 =

(tanh(√3√7𝑡−𝑥))
4
−2 tanh(√3√7𝑡−𝑥)(s𝑒𝑐ℎ(√3√7𝑡−𝑥))

2
−1

tanh(√3√7𝑡−𝑥)(s𝑒𝑐ℎ(√3√7𝑡−𝑥))
2
((s𝑒𝑐ℎ(√3√7𝑡−𝑥))

2
+(tanh(√3√7𝑡−𝑥))

2
)
, 

                                                                                                   (41) 

for Eq. (41). 

 

  

   

Fig.  5.  Plots of real solution (39) (a [3Dplot], b [density plot], c [contour 
plot], d [2D plot]) for Graph 𝑢2 

4.7. Set VII 

𝐽 = −1/3 
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

𝑇2
, 𝐴0 = −2𝑘 𝐴1,    𝐵1 = 𝑘

2𝐴1, (42) 

𝑝2 = 4/3 𝐴1
2𝑝6(5 𝑘

2 − 1) + 2 𝜇,    𝑝4 = 16/3𝑘 𝐴1𝑝6,

𝜎2 = 𝜎3 = 0,      𝐴1 = −4 
(2 𝜇−𝑝2)𝑘

𝑝4(𝑘
2−5)

,  

𝜓1 = −4 
(2 𝜇−𝑝2)𝑘((𝑠𝑛(𝜉,𝑘))

4
𝑘2−2 𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) =

{−4 
(2 𝜇−𝑝2)𝑘((𝑠𝑛(𝜉,𝑘))

4
𝑘2−2 𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−1)

𝑝4(𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

. (43) 

Some subgroups for relation (43):  
Supposing k = 1 in Eq. (43) supplies  

𝑢2(𝑥, 𝑡) =

{
(2 𝜇−𝑝2)((tanh(𝑥−𝜆𝑡))

4
−2 tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ2(𝑥−𝜆𝑡)−1)

𝑝4tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ
2(𝑥−𝜆𝑡)

}

1

2

. (44) 
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4.8. Set VIII  

𝐽 = −1/3 
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

𝑇2
, 𝐴0 = 2𝑖𝑘 𝐴1,      

𝐵1 = −𝑘
2𝐴1, 𝑖 = √−1,  (45) 

𝑝2 = −4/3 𝐴1
2𝑝6(4 𝑘

2 + 1) + 2 𝜇,     

𝑝4 = 16/3𝑖𝑘 𝐴1𝑝6,    𝜎2 = 𝜎3 = 0,    𝐴1 =
−4 𝑖𝑘(2 𝜇−𝑝2)

𝑝4(4 𝑘
2+1)

,    

𝜓1 =

−4 𝑖𝑘(2 𝜇−𝑝2)(−(𝑠𝑛(𝜉,𝑘))
4
𝑘2+2 𝑖𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)+2 𝑘2(𝑠𝑛(𝜉,𝑘))

2
−1)

𝑝4(4 𝑘
2+1)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {
−4 𝑖𝑘(2 𝜇−𝑝2)(−(𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 𝑖𝑘𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)+2 𝑘2(𝑠𝑛(𝜉,𝑘))

2
−1)

𝑝4(4 𝑘
2+1)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

.       (46) 

Some subgroups for relation (46):  

Supposing k = 1 in Eq. (46) yields  

𝑢2(𝑥, 𝑡) = {
−4 𝑖(2 𝜇−𝑝2)(−(tanh(𝑥−𝜆𝑡))

4
+2 𝑖tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ2(𝑥−𝜆𝑡)+2 (tanh(𝑥−𝜆𝑡))

2
−1)

5𝑝4tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ
2(𝑥−𝜆𝑡)

}

1

2

.       (47) 

4.9. Set IX 

𝐽 = −
1

3

4 𝑇2𝐴1
2𝑝6−3 𝜆

2𝑚

𝑇2
,    

𝐴0 = 2√1 − 𝑘2 𝐴1,   

𝐵1 = −𝑘
2𝐴1, 𝑖 = √−1, (48) 

𝑝2 = −
4

3
𝐴1

2𝑝6(4 𝑘
2 − 5) + 2 𝜇,       

𝑝4 = −
16

3
√1 − 𝑘2𝐴1𝑝6,   

𝜎2 = 𝜎3 = 0,       

𝐴1 = −4 
√−𝑘2+1(2 𝜇−𝑝2)

𝑝4(4 𝑘
2−5)

,    

𝜓1 = −4 
√1−𝑘2(2 𝜇−𝑝2)(−(𝑠𝑛(𝜉,𝑘))

4
𝑘2+2 √1−𝑘2𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)+2 𝑘2(𝑠𝑛(𝜉,𝑘))

2
−1)

𝑝4(4 𝑘
2−5)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘) 

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {
4√1−𝑘2(2𝜇−𝑝2)(2√1−𝑘

2𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)−𝑠𝑛4(𝜉,𝑘)𝑘2+2𝑘2𝑠𝑛2(𝜉,𝑘)−1)

𝑝4(5−4 𝑘
2)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑑𝑛(𝜉,𝑘)

}

1

2

.      (49) 

Some subgroups for relation (49):  
Supposing k = 0 in Eq. (49) provides  

𝑢2(𝑥, 𝑡) = {4 
(2 𝜇−𝑝2)(2 sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)−1)

5𝑝4sin(𝑥−𝜆𝑡)cos(𝑥−𝜆𝑡)
}

1

2
. (50) 

4.10. Set X  

𝐽 = −
4 𝑇2𝐴1

2𝑝6−3 𝜆
2𝑚

3𝑇2
, 𝐴0 = (−1 + √1 − 𝑘

2)𝐴1    

𝐵1 = 0, 𝑝2 = −
4

3
𝐴1

2𝑝6(𝑘
2 + 3 √1 − 𝑘2 − 2) + 2 𝜇,    (51) 

𝑝4 = −8/3 (−1 + √−𝑘
2 + 1)𝐴1𝑝6,    𝜎1 = 𝜎4 = 0,      

 𝐴1 = −2 
2 𝜇 √−𝑘2+1−𝑝2√−𝑘

2+1−2 𝜇+𝑝2

𝑝4(𝑘
2+3 √−𝑘2+1−2)

, 

𝜓1 = −2 
(2 𝜇 √−𝑘2+1−𝑝2√−𝑘

2+1−2 𝜇+𝑝2)((−1+√−𝑘
2+1)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)+𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
2+3 √−𝑘2+1−2)𝑐𝑛(𝜉,𝑘)𝑠𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {−2 
(2 𝜇 √−𝑘2+1−𝑝2√−𝑘

2+1−2 𝜇+𝑝2)((−1+√−𝑘
2+1)𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)+𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
2+3 √−𝑘2+1−2)𝑐𝑛(𝜉,𝑘)𝑠𝑛(𝜉,𝑘)

}

1

2

.      (52) 

Some subgroups for relation (52):  
Supposing k = 0 in Eq. (52) yields  𝑢2(𝑥, 𝑡) = {−2 

(2 𝜇 −𝑝2−2 𝜇+𝑝2)

𝑝4cos(𝑥−𝜆𝑡)sin(𝑥−𝜆𝑡)
}

1

2
. (53) 
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 Supposing 𝑘 = 1 in Eq. (52) provides  

𝑢2(𝑥, 𝑡) = {2 
(−2 𝜇+𝑝2)(−tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)+𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡))

𝑝4𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)tanh(𝑥−𝜆𝑡)
}

1

2
.                     (54) 

4.11. Set XI 

𝐽 = −1/3 
−3 𝑘4𝜆2𝑚+4 𝑇2𝐵1

2𝑝6

𝑇2𝑘4
,    𝐴0 =

(−1+√−𝑘2+1)𝐵1

𝑘2
,    𝐴1 = 0, 𝜎1 = 𝜎4 = 0,                      (55) 

𝑝2 = −2/3 
2 𝐵1

2𝑝6(𝑘
4−10 𝑘2+10)−3 𝑘4𝜇 (𝑘2−2)+2 √−𝑘2+1(−3 𝑘4𝜇+5 𝑘2𝐵1

2𝑝6−10 𝐵1
2𝑝6)

𝑘4(𝑘2+2 √−𝑘2+1−2)
,  

𝑝4 = −
8

3

(−1+√1−𝑘2)𝐵1𝑝6

𝑘2
,    𝐵1 = −2

𝑘2(−√1−𝑘2(𝑘2−4)(𝑝2−2𝜇)−6𝑘
2𝜇+3𝑝2𝑘

2+8𝜇−4 𝑝2)

𝑝4(𝑘
4+5(𝑘2−2)√1−𝑘2−10𝑘2+10)

,  

𝜓1 = 2 
(𝑝2−2 𝜇)(√−𝑘

2+1(𝑘2−4)−3 𝑘2+4)(𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑘2+𝑑𝑛(𝜉,𝑘)√−𝑘2+1−𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
4+5 (𝑘2−2)√−𝑘2+1+10)𝑑𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {
2(𝑝2−2 𝜇)(√1−𝑘

2(𝑘2−4)−3 𝑘2+4)(𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑘2+𝑑𝑛(𝜉,𝑘)√1−𝑘2−𝑑𝑛(𝜉,𝑘))

𝑝4(𝑘
4+5 (𝑘2−2)√1−𝑘2+10)𝑑𝑛(𝜉,𝑘)

}

1

2

.      (56) 

Some subgroups for relation (56):  

Supposing k = 1 in Eq. (56) yields  

𝑢2(𝑥, 𝑡) = {2/11 
(𝑝2−2 𝜇)(tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)−𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡))

𝑝4𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)
}

1

2
.         (57) 

4.12. Set XII 

𝐽 = −1/3 
−3 𝑘4𝜆2𝑚+4 𝑇2𝐵1

2𝑝6

𝑇2𝑘4
,    𝐴0 =

(1+√−𝑘2+1)𝐵1

𝑘2
,    𝐴1 = 0, 𝜎1 = 𝜎4 = 0,        (58) 

𝑝2 = −2/3 
−2 𝐵1

2𝑝6(𝑘
4−10 𝑘2+10)+3 𝑘6𝜇+2 √−𝑘2+1(−3 𝑘4𝜇+5 𝑘2𝐵1

2𝑝6−10 𝐵1
2𝑝6)−6 𝑘

4𝜇

𝑘4(−𝑘2+2 √−𝑘2+1+2)
,  

𝑝4 = −8/3 
(1+√−𝑘2+1)𝐵1𝑝6

𝑘2
,    𝐵1 = 2 

𝑘2(−√−𝑘2+1(𝑘2−4)(𝑝2−2 𝜇)+6 𝑘
2𝜇−3 𝑝2𝑘

2−8 𝜇+4 𝑝2)

𝑝4(−𝑘
4+5 (𝑘2−2)√−𝑘2+1+10 𝑘2−10)

,  

𝜓1 =
2(2 𝜇−𝑝2)(√1−𝑘

2(𝑘2−4)+3𝑘2−4)(𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑘2+𝑑𝑛(𝜉,𝑘)√−𝑘2+1+𝑑𝑛(𝜉,𝑘))

𝑝4(−𝑘
4+5√1−𝑘2𝑘2+10𝑘2−10√1−𝑘2−10)𝑑𝑛(𝜉,𝑘)

.  

As a result, the exact soliton solution is given by  

𝑢1(𝑥, 𝑡) = {
2(2 𝜇−𝑝2)(√1−𝑘

2(𝑘2−4)+3𝑘2−4)(𝑠𝑛(𝜉,𝑘)𝑐𝑛(𝜉,𝑘)𝑘2+𝑑𝑛(𝜉,𝑘)√1−𝑘2+𝑑𝑛(𝜉,𝑘))

𝑝4(−𝑘
4+5√1−𝑘2𝑘2+10𝑘2−10√1−𝑘2−10)𝑑𝑛(𝜉,𝑘)

}

1

2

.      (59) 

 

  
Some subgroups for relation (59):  
Supposing k = 1 in Eq. (59) supplies  

𝑢2(𝑥, 𝑡) = {−2 
(𝑝2−2 𝜇)(tanh(𝑥−𝜆𝑡)𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)+𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡))

𝑝4𝑠𝑒𝑐ℎ(𝑥−𝜆𝑡)
}

1

2
.  

(60) 

5. THE 𝐞𝐱𝐩(−𝛟(𝛈))-EXPANSION METHOD 

Handling the investigated model through the rational 

exp(−ϕ(η))-expansion method gets the following steps as 
mentioned earlier:  

 Step 1.  

𝒮1(𝜓, 𝜓𝑥, 𝜓𝑡 , 𝜓𝑥𝑥 , 𝜓𝑡𝑡 , . . . ) = 0,     (61) 
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where 𝒮 is a polynomial of ψ and its partial derivatives.  
 Step 2. Firstly, by utilising travelling wave transformation  

𝜂 = 𝑥 − 𝜆𝑡 + 𝜃0,    8.5𝑐𝑚 (62) 

where λ is the non-zero arbitrary value, allows to diminish Eq. (61) 

to an ODE of ψ = ψ(η) in the below form,  

𝒮2(𝜓, 𝜅𝜓′, 𝜔𝜓′, 𝜅
2𝜓′′, 𝜔2𝜓′′, . . . ) = 0.     (63) 

 Step 3. The generated solutions of (61) are:  

𝜓(𝜂) =
∑  𝑁
𝑖=0𝐴𝑖(e

−𝜙(𝜂))
𝑖

∑  𝑀
𝑖=0𝐵𝑖(e

−𝜙(𝜂))
𝑖,     (64) 

where Ai, Bi(0 ≤ j ≤ N,M), are the parameters to be deter-

mined AN, BM ≠ 0, and, ϕ = ϕ(η) satisfying the ODE given 
below  

𝜙′ = 𝑤1e
𝜙 + e−𝜙 + 𝑤2,    𝜙′ =

𝑑𝜙

𝑑𝜂
.     (65) 

The particular solutions of Eq. (65) will be read as: 

Solution-1: When w1 ≠ 0 and w2
2 − 4w1 > 0, therefore we 

attain 

𝜙(𝜂) = ln(−
√𝑤2

2−4𝑤1

2𝑤1
tanh(

√𝑤2
2−4𝑤1

2
(𝜂 + 𝐸)) −

𝑤2

2𝑤1
).   

 Solution-2: When w1 ≠ 0 and w2
2 − 4w1 < 0, therefore 

we attain 

𝜙(𝜂) = ln(
√−𝑤2

2+4𝑤1

2𝑤1
tan(

√−𝑤2
2+4𝑤1

2
(𝜂 + 𝐸)) −

𝑤2

2𝑤1
).  

 Solution-3: When w1 = 0, w2 ≠ 0, and w2
2 − 4w1 > 0, 

therefore we attain 

Φ(𝜂) = −ln (
𝑤2

exp(𝑤2(𝜂+𝐸))−1
).  

 Solution-4: When w1 ≠ 0, w2 ≠ 0, and w2
2 − 4w1 = 0, 

therefore we attain 

𝜙(𝜂) = ln (−
2𝑤2(𝜉+𝐸)+4

𝑤2
2(𝜂+𝐸)

).  

 Solution-5: When w1 = 0, w2 = 0, and w2
2 − 4w1 = 0, 

therefore we attain ϕ(η) = ln(η + E), where Aj(0 ≤ j ≤

N), Bj(0 ≤ j ≤ M), E,w2 and w1 are also the constants to be 

explored later.  
 Step 4. Balancing the non-linear ODE can obtain the values 

M and N.  
 Step 5. By solving the algebraic equations, we can get to the 

mentioned values. 

6.  APPLICATION EFM 

In this section, the innovative soliton wave solutions for the 
model under investigation are constructed through an analytical 
approach outlined. 

The set of categories of solutions with N = 1,M = 0: 

6.1. Set I 

𝜇 = 1/32 
16 𝑝2𝑝6−3 𝑝4

2

𝑝6
, 𝐴0 = 0,      

𝐴1 = −
𝐵0(𝐽𝑇

2−𝜆2𝑚)

𝑇
√−3 (4 𝐽𝑇2𝑝6 − 4 𝜆

2𝑚𝑝6)
−1,  (66) 

𝑤1 = 0,    𝑤2 = √−3 (4 𝐽𝑇
2𝑝6 − 4 𝜆

2𝑚𝑝6)
−1𝑝4𝑇.   

As a result (Group 3), the kink soliton solution is given by  

𝑢1(𝑥, 𝑡) = {
3(𝐽𝑇2−𝜆2𝑚)(4 𝐽𝑇2𝑝6−4 𝜆

2𝑚𝑝6)
−1
𝑝4

exp(√−3 (4 𝐽𝑇2𝑝6−4 𝜆
2𝑚𝑝6)

−1𝑝4𝑇(𝑥−𝜆𝑡+𝐸))−1
}

1

2

. (67) 

6.2. Set II 

𝜆 =
𝑇

𝐵0
√1/3 

3 𝐽𝐵0
2+4 𝐴1

2𝑝6

𝑚
, 𝜇 = 1/32 

16 𝑝2𝑝6−3 𝑝4
2

𝑝6
,    

𝐴0 = 1/8 
4 𝐴1𝑝6𝑤2−3 𝐵0𝑝4

𝑝6
, (68) 

𝑤1 =
16 𝐴1

2𝑝6
2𝑤2

2−9 𝐵0
2𝑝4

2

64 𝐴1
2𝑝6

2 , 𝑤2
2 − 4𝑤1 =

9 𝐵0
2𝑝4

2

16 𝐴1
2𝑝6

2.  

As a result by (Group 1), the soliton solution is concluded by  

 
𝑢1(𝑥, 𝑡) =

{1/8𝐵0  
4 𝐴1𝑝6𝑤2−3 𝐵0𝑝4

𝑝6
+

𝐴1

𝐵0
×

1

−24 
𝐵0𝑝4𝐴1𝑝6

(4 𝐴1𝑝6𝑤2−3 𝐵0𝑝4)(4 𝐴1𝑝6𝑤2+3 𝐵0𝑝4)
tanh(3/8 

𝐵0𝑝4
𝐴1𝑝6

(𝜂+𝐸))−32 
𝑤2𝑝6

2𝐴1
2

(4 𝐴1𝑝6𝑤2−3 𝐵0𝑝4)(4 𝐴1𝑝6𝑤2+3 𝐵0𝑝4)

}

1

2

  (69) 

 

when 𝜂 = 𝑥 −
𝑇

𝐵0
√1/3 

3 𝐽𝐵0
2+4 𝐴1

2𝑝6

𝑚
𝑡. 

The set of categories of solutions with N = 2,M = 1: 

6.3.  Set I 

𝜆 =
𝑇

𝑤2
√1/4 

4 𝐽𝑝6𝑤2
2+3 𝑝4

2

𝑚𝑝6
, 𝜇 =

16 𝑝2𝑝6−3 𝑝4
2

32𝑝6
,    

𝐴0 = 𝐴2 = 𝑤1 = 0,    𝐵0 =
𝑤2(4 𝐴1𝑝6+3 𝐵1𝑝4)

3𝑝4
, (70) 
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𝑢1(𝑥, 𝑡) = {3 
𝐴1e

−𝜙(𝜂)𝑝4

3 𝐵1e
−𝜙(𝜂)𝑝4+4 𝐴1𝑝6𝑤2+3 𝐵1𝑝4𝑤2

}

1

2
,        

𝜂 = 𝑥 −
𝑇

𝑤2
√1/4 

4 𝐽𝑝6𝑤2
2+3 𝑝4

2

𝑚𝑝6
𝑡.         (71) 

6.4. Set II 

𝜆 =
𝑇

𝐵1
√
3 𝐽𝐵1

2𝑤1+4 𝐴1
2𝑝6+3 𝐴1𝐵1𝑝4

3𝑚𝑤1
, 𝜇 =

16 𝑝2𝑝6−3 𝑝4
2

32𝑝6
, 𝐴0 =

√
4 𝐴1

2𝑝6𝑤1+3 𝐴1𝐵1𝑝4𝑤1

4𝑝6
,   (72) 

𝐴2 = 𝐵0 = 0,      𝑤2 =

1/2 
(8 𝐴1𝑝6+3 𝐵1𝑝4)𝑤1

𝑝6

1

√
𝐴1𝑤1(4 𝐴1𝑝6+3 𝐵1𝑝4)

𝑝6

,  

𝑢2(𝑥, 𝑡) =  

{
e𝜙(𝜂)

𝐵1
(√1/4 

4 𝐴1
2𝑝6𝑤1+3 𝐴1𝐵1𝑝4𝑤1

𝑝6
+ 𝐴1e

−𝜙(𝜂))}

1

2

,  (73) 

 where 𝜂 = 𝑥 −
𝑇

𝐵1
√1/3 

3 𝐽𝐵1
2𝑤1+4 𝐴1

2𝑝6+3 𝐴1𝐵1𝑝4

𝑚𝑤1
𝑡.  

6.5. Set III  

𝜆 =
𝑇

−𝐴1
2𝑤1+𝐴0

2
√1/4 

4 𝐽𝑝6(−𝐴1
2𝑤1+𝐴0

2)
2
+3 𝐴0

2𝐴1
2𝑝4

2

𝑚𝑝6
,    

𝜇 = 1/32 
16 𝑝2𝑝6−3 𝑝4

2

𝑝6
, 𝐴2 = 0,   (74) 

𝐵0 = −1/3 
−𝐴1𝑤1(4 𝐴1𝑝6+3 𝐵1𝑝4)+4 𝐴0

2𝑝6

𝐴0𝑝4
,    𝑤2 =

𝐴1
2𝑤1+𝐴0

2

𝐴0𝐴1
,

𝑤2
2 − 4𝑤1 =

(−𝐴1
2𝑤1+𝐴0

2)
2

𝐴0
2𝐴1

2 ,  

𝑢3(𝑥, 𝑡) = 

{3 
(𝐴0+𝐴1e

−𝜙(𝜂))𝐴0𝑝4

3 𝐵1e
−𝜙(𝜂)𝐴0𝑝4+4 𝐴1

2𝑝6𝑤1+3 𝐴1𝐵1𝑝4𝑤1−4 𝐴0
2𝑝6
}

1

2
,        (75) 

where 

𝜂 = 𝑥 −
𝑇

−𝐴1
2𝑤1+𝐴0

2
√1/4 

4 𝐽𝑝6(−𝐴1
2𝑤1+𝐴0

2)
2
+3 𝐴0

2𝐴1
2𝑝4

2

𝑚𝑝6
𝑡. 

6.6. Set IV 

𝜆 =
𝑇

𝐵0
√1/3 

3 𝐽𝐵0
2 + 𝐴1

2𝑝6
𝑚

,

𝜇 = 1/32 
16 𝑝2𝑝6 − 3 𝑝4

2

𝑝6
,   

𝐴0 = −1/2 
𝐵0(2 𝐴1𝑝6+3 𝐵1𝑝4)

𝑝6𝐵1
, 𝐴2 = 0, (76) 

𝑤1 = 1/2 
𝐵0
2(2 𝐴1𝑝6+3 𝐵1𝑝4)

𝑝6𝐵1
2𝐴1

,    𝑤2 =

−1/2 
(4 𝐴1𝑝6+3 𝐵1𝑝4)𝐵0

𝐴1𝑝6𝐵1
,      𝑤2

2 − 4𝑤1 = 9/4 
𝐵0
2𝑝4

2

𝐴1
2𝑝6

2,  

𝑢4(𝑥, 𝑡) =

{
 
 
 
 

 
 
 
 

1/2 
2 𝐴1e

−𝜙(𝑥−
𝑇
𝐵0

√1/3 
3 𝐽𝐵0

2+𝐴1
2𝑝6

𝑚 𝑡)

𝑝6𝐵1−2 𝐴1𝐵0𝑝6−3 𝐵0𝐵1𝑝4

𝑝6𝐵1

(

 
 
 

𝐵0+𝐵1e

−𝜙(𝑥−
𝑇
𝐵0

√1/3 
3 𝐽𝐵0

2+𝐴1
2𝑝6

𝑚 𝑡)

)

 
 
 

}
 
 
 
 

 
 
 
 

1

2

.       (77) 

6.7. Set V  

𝜆 =

𝑇

𝐵0(2 𝐴1𝑝6+𝐵1𝑝4)
√12 𝐽𝐵0

2(2 𝐴1𝑝6+𝐵1𝑝4)
2+𝐴1

2𝑝6(4 𝐴1𝑝6+3 𝐵1𝑝4)
2

12𝑚
,

𝜇 =
16 𝑝2𝑝6−3 𝑝4

2

32𝑝6
,   (78) 

𝐴0 = −
𝐵0(𝐴1𝑝6 + 𝐵1𝑝4)

𝐵1𝑝6
,     𝐴2 = 0,  

𝑤1 =
𝐵0
2(𝐴1𝑝6+𝐵1𝑝4)(4 𝐴1𝑝6+𝐵1𝑝4)

𝑝6𝐵1
2𝐴1(4 𝐴1𝑝6+3 𝐵1𝑝4)

,    

𝑤2 = −
(8 𝐴1

2𝑝6
2+8 𝐴1𝐵1𝑝4𝑝6+3 𝐵1

2𝑝4
2)𝐵0

𝑝6𝐵1𝐴1(4 𝐴1𝑝6+3 𝐵1𝑝4)
, 𝑤2

2 − 4𝑤1 =

9 
𝐵0
2𝑝4

2(2 𝐴1𝑝6+𝐵1𝑝4)
2

𝑝6
2𝐴1

2(4 𝐴1𝑝6+3 𝐵1𝑝4)
2,  

𝑢5(𝑥, 𝑡) = {
𝐴1e

−𝜙(𝜂)𝑝6𝐵1−𝐴1𝐵0𝑝6−𝐵0𝐵1𝑝4

𝑝6𝐵1(𝐵0+𝐵1e
−𝜙(𝜂))

}

1

2
, (79) 

where 𝜂 = 𝑥 −
𝑇

𝐵0(2 𝐴1𝑝6+𝐵1𝑝4)
√1/12 

12 𝐽𝐵0
2(2 𝐴1𝑝6+𝐵1𝑝4)

2+𝐴1
2𝑝6(4 𝐴1𝑝6+3 𝐵1𝑝4)

2

𝑚
𝑡. 
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6.8. Set VI  

𝜆 =

𝑇

𝐵0(8𝐴1𝑝6+3𝐵1𝑝4)
√3 𝐽𝐵0

2(8𝐴1𝑝6+3𝐵1𝑝4)
2+4𝐴1

2𝑝6(4𝐴1𝑝6+3𝐵1𝑝4)
2

3𝑚
,    𝜇 =

16𝑝2𝑝6−3𝑝4
2

32𝑝6
,   (80) 

𝐴0 = −1/4 
𝐵0(4 𝐴1𝑝6+3 𝐵1𝑝4)

𝐵1𝑝6
,    𝐴2 = 0,    𝑤1 =

𝐵0
2

𝐵1
2,    

𝑤2 = −1/4 
𝐵0(32 𝐴1

2𝑝6
2+24 𝐴1𝐵1𝑝4𝑝6+9 𝐵1

2𝑝4
2)

𝐵1𝑝6𝐴1(4 𝐴1𝑝6+3 𝐵1𝑝4)
,    𝑤2

2 −

4𝑤1 =
9 𝐵0

2𝑝4
2(8 𝐴1𝑝6+3 𝐵1𝑝4)

2

16 𝑝6
2𝐴1

2(4 𝐴1𝑝6+3 𝐵1𝑝4)
2,  

𝑢6(𝑥, 𝑡) = {1/4 
4 𝐴1e

−𝜙(𝜂)𝑝6𝐵1−4 𝐴1𝐵0𝑝6−3 𝐵0𝐵1𝑝4

𝑝6𝐵1(𝐵0+𝐵1e
−𝜙(𝜂))

}

1

2
, (81) 

 where 

𝜂 = 𝑥 −
𝑇

𝐵0(8 𝐴1𝑝6+3 𝐵1𝑝4)
√1/3 

3 𝐽𝐵0
2(8 𝐴1𝑝6+3 𝐵1𝑝4)

2+4 𝐴1
2𝑝6(4 𝐴1𝑝6+3 𝐵1𝑝4)

2

𝑚
𝑡. 

6.9. Set VII  

𝜆 =
𝑇

𝐵1
√1/3 

3 𝐽𝐵1
2+4 𝐴2

2𝑝6

𝑚
, 𝜇 = 1/32 

16 𝑝2𝑝6−3 𝑝4
2

𝑝6
,    

 𝐴0 =
𝐵0(𝐴1𝐵1−𝐴2𝐵0)

𝐵1
2 , (82) 

𝑤1 = 1/4 
(𝐴1𝐵1−𝐴2𝐵0)(4 𝐴1𝐵1𝑝6−4 𝐴2𝐵0𝑝6+3 𝐵1

2𝑝4)

𝐴2
2𝐵1

2𝑝6
,    

𝑤2 = 1/4 
8 𝑝6(𝐴1𝐵1−𝐴2𝐵0)+3 𝐵1

2𝑝4

𝐴2𝐵1𝑝6
,    𝑤2

2 − 4𝑤1 =
9 𝐵1

2𝑝4
2

16 𝐴2
2𝑝6

2,  

𝑢7(𝑥, 𝑡) =

{
 
 

 
 
e

−𝜙(𝑥−
𝑇
𝐵1

√3 𝐽𝐵1
2+4 𝐴2

2𝑝6
3𝑚 𝑡)

𝐴2𝐵1+𝐴1𝐵1−𝐴2𝐵0

𝐵1
2

}
 
 

 
 

1

2

. (83) 

As a result (Group 1), the soliton solution is given by  

𝑢7(𝑥, 𝑡) =

{
 

 (−3
2

𝐵1
3𝑝4𝐴2

𝑆(3 𝐵1
2𝑝4+4 𝑝6𝑆)

tanh(
3

8

𝐵1𝑝4
𝐴2𝑝6

(𝜂+𝐸))−
(3 𝐵1

2𝑝4+8 𝑝6𝑆)𝐴2𝐵1

2𝑆(3 𝐵1
2𝑝4+4 𝑝6𝑆)

)

−1

𝐴2𝐵1+𝐴1𝐵1−𝐴2𝐵0

𝐵1
2

}
 

 

1

2

,     (84) 

 where 𝜂 = 𝑥 −
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
𝑡 and 𝑆 = 𝐴1𝐵1 − 𝐴2𝐵0.  

6.10.  Set VIII 

𝜆 =
𝑇

𝐵1
√1/3 

3 𝐽𝐵1
2+4 𝐴2

2𝑝6

𝑚
,    𝜇 =

64 𝐴2𝑝6
2(𝐴0𝐵1

2−𝐴2𝐵0
2)+48 𝐵1

2𝑝6(𝐴2𝐵0𝑝4+𝐵1
2𝑝2)−9 𝐵1

4𝑝4
2

96 𝑝6𝐵1
4 , (85) 

𝐴1 = 1/4 
8 𝐴2𝐵0𝑝6−3 𝐵1

2𝑝4

𝐵1𝑝6
,    𝑤1 =

𝐴0

𝐴2
, 𝑤2 = 1/

4 
8 𝐴2𝐵0𝑝6−3 𝐵1

2𝑝4

𝐴2𝑝6𝐵1
,  

𝑤2
2 − 4𝑤1 =

−
1

16

64 𝐴2𝑝6
2(𝐴0𝐵1

2−𝐴2𝐵0
2)+48 𝐴2𝐵0𝐵1

2𝑝4𝑝6−9 𝐵1
4𝑝4

2

𝐴2
2𝐵1

2𝑝6
2 ,   

𝑢8(𝑥, 𝑡) =

{
 
 
 
 

 
 
 
 

4𝐴2e

−2 𝜙(
𝑇
𝐵1

√3 𝐽𝐵1
2+4 𝐴2

2𝑝6
3𝑚 )

𝑝6𝐵1+e

−𝜙(
𝑇
𝐵1

√3 𝐽𝐵1
2+4𝐴2

2𝑝6
3𝑚 )

(8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4)+4 𝐴0𝑝6𝐵1

4𝑝6𝐵1

(

 
 
 

𝐵0+𝐵1e

−𝜙(
𝑇
𝐵1

√3 𝐽𝐵1
2+4𝐴2

2𝑝6
3𝑚 )

)

 
 
 

}
 
 
 
 

 
 
 
 

1

2

.    (86)  

As a result (Groups 1 and 2), the soliton and periodic solutions 

are given, respectively by  

𝑢8(𝑥, 𝑡) = {
4 𝐴2Φ

2𝑝6𝐵1+Φ(8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4)+4 𝐴0𝑝6𝐵1

4𝑝6𝐵1(𝐵0+𝐵1Φ)
}

1

2
, (87) 

Φ =

{−
√𝑆

8𝐵1𝑝6𝐴0
tanh (

√𝑆

8𝐴2𝑝6𝐵1
(𝜂 + 𝐸)) −

8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4

8𝐵1𝑝6𝐴0
}
−1

,   

 𝑆 > 0,     

Φ = {
√−𝑆

8𝐵1𝑝6𝐴0
tan (

√−𝑆

8𝐴2𝑝6𝐵1
(𝜂 + 𝐸)) −

8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4

8𝐵1𝑝6𝐴0
}
−1

,  

𝑆 < 0, 

where 𝑆 = (8 𝐴2𝐵0𝑝6 − 3 𝐵1
2𝑝4)

2
− 64 𝐴0𝐴2𝐵1

2𝑝6
2  

and 𝜂 = 𝑥 −
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
𝑡. 
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6.11. Set IX  

𝜇 =
16 𝑝6

2(𝐴1𝐵1−2 𝐴2𝐵0)
2+8 𝐵1

2𝑝4𝑝6(𝐴1𝐵1−2 𝐴2𝐵0)+16 𝐵1
4𝑝2𝑝6−3 𝐵1

4𝑝4
2

32𝑝6𝐵1
4 ,        (88) 

𝐴0 = 1/4 
𝐴1

2

𝐴2
,    𝑤1 = 1/4 

𝐴1
2𝐵1

2𝑝6+4 𝐴1𝐴2𝐵0𝐵1𝑝6−8 𝐴2
2𝐵0

2𝑝6+3 𝐴2𝐵0𝐵1
2𝑝4

𝐴2
2𝐵1

2𝑝6
,  

𝜆 =
𝑇

𝐵1
√1/3 

3 𝐽𝐵1
2+4 𝐴2

2𝑝6

𝑚
, 𝑤2 =

8 𝐴1𝐵1𝑝6−8 𝐴2𝐵0𝑝6+3 𝐵1
2𝑝4

4𝐴2𝐵1𝑝6
,    

𝑤2
2 − 4𝑤1 = 3/16 

(4 𝐴1𝐵1𝑝6−8 𝐴2𝐵0𝑝6+3 𝐵1
2𝑝4)(4 𝐴1𝐵1𝑝6−8 𝐴2𝐵0𝑝6+𝐵1

2𝑝4)

𝐴2
2𝐵1

2𝑝6
2 ,  

𝑢9(𝑥, 𝑡) =

{
 
 
 
 

 
 
 
 

1/4 
4 𝐴2

2e

−2 𝜙(𝑥−
𝑇
𝐵1

√3 𝐽𝐵1
2+4 𝐴2

2𝑝6
3𝑚 𝑡)

+4 𝐴1e

−𝜙(𝑥−
𝑇
𝐵1

√3 𝐽𝐵1
2+4 𝐴2

2𝑝6
3𝑚 𝑡)

𝐴2+𝐴1
2

𝐴2

(

 
 
 

𝐵0+𝐵1e

−𝜙(𝑥−
𝑇
𝐵1

√3 𝐽𝐵1
2+4 𝐴2

2𝑝6
3𝑚 𝑡)

)

 
 
 

}
 
 
 
 

 
 
 
 

1

2

.      (89) 

As a result (Groups 1 and 2), the soliton and periodic solutions are given, respectively, by  

𝑢9(𝑥, 𝑡) = {1/4 
4 𝐴2

2Φ2+4 𝐴1Φ𝐴2+𝐴1
2

𝐴2(𝐵0+𝐵1Φ)
}

1

2
,                (90) 

Φ = {−1/2 
√3√𝑆𝐴2𝐵1

𝐾
tanh (1/8 

√3√𝑆

𝐴2𝐵1𝑝6
(𝜂 + 𝐸)) −

(8 𝑝6(𝐴1𝐵1−𝐴2𝐵0)+3 𝐵1
2𝑝4)𝐴2𝐵1

2𝐾
}
−1

,      𝑆 > 0,  

Φ = {1/2 
√3√−𝑆𝐴2𝐵1

𝐾
tan (1/8 

√3√−𝑆

𝐴2𝐵1𝑝6
(𝜂 + 𝐸)) −

(8 𝑝6(𝐴1𝐵1−𝐴2𝐵0)+3 𝐵1
2𝑝4)𝐴2𝐵1

2𝐾
}
−1

,      𝑆 < 0,  

where  

𝜂 = 𝑥 −
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
𝑡,    𝐾 = 𝐴1

2𝐵1
2𝑝6 + 4 𝐴1𝐴2𝐵0𝐵1𝑝6 − 8 𝐴2

2𝐵0
2𝑝6 + 3 𝐴2𝐵0𝐵1

2𝑝4,  

𝑆 = (4 𝐴1𝐵1𝑝6 − 8 𝐴2𝐵0𝑝6 + 3 𝐵1
2𝑝4)(4 𝐴1𝐵1𝑝6 − 8 𝐴2𝐵0𝑝6 + 𝐵1

2𝑝4).  

6.12. Set X  

𝜆 =
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
,    𝜇 =

16 𝑝2𝑝6−3 𝑝4
2

32𝑝6
,    𝐴0 =

32 𝐴2𝐵0𝑝6(8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4)+9 𝐵1

4𝑝4
2

256 𝐵1
2𝑝6

2𝐴2
,  (91) 

𝐴1 =
16 𝐴2𝐵0𝑝6−3 𝐵1

2𝑝4

8𝐵1𝑝6
,    𝑤1 =

256 𝐴2
2𝐵0

2𝑝6
2−9 𝐵1

4𝑝4
2

256 𝐴2
2𝐵1

2𝑝6
2 ,    𝑤2 = 2 

𝐵0

𝐵1
,    𝑤2

2 − 4𝑤1 =
9 𝐵1

2𝑝4
2

64 𝐴2
2𝑝6

2,  

𝑢10(𝑥, 𝑡) = {
256𝐴2

2e−2𝜙(𝜂)𝐵1
2𝑝6

2+32e−𝜙(𝜂)𝐴2𝐵1𝑝6Υ1+32𝐴2𝐵0𝑝6(8𝐴2𝐵0𝑝6−3𝐵1
2𝑝4)+9𝐵1

4𝑝4
2

256𝐵1
2𝑝6

2𝐴2(𝐵0+𝐵1e
−𝜙(𝜂))

}

1

2
,      (92) 

where 𝜂 = 𝑥 −
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
𝑡. As a result (Group 1), the soliton solution is given by  

𝑢10(𝑥, 𝑡) = {
256𝐴2

2Φ2𝐵1
2𝑝6

2+32Φ𝐴2𝐵1𝑝6Υ1+32𝐴2𝐵0𝑝6(8𝐴2𝐵0𝑝6−3𝐵1
2𝑝4)+9𝐵1

4𝑝4
2

256𝐵1
2𝑝6

2𝐴2(𝐵0+𝐵1Φ)
}

1

2
,       (93) 

Υ1 = (16𝐴2𝐵0𝑝6 − 3𝐵1
2𝑝4),  

Φ = {−
3

8

𝐵1
3𝑝4𝐴2𝑝6

2 𝐴2
2𝐵0

2𝑝6
2−

9 𝐵1
4𝑝4

2

128

tanh [
3

16

𝐵1𝑝4

𝐴2𝑝6
(𝑥 −

𝑇

𝐵1
√3 𝐽𝐵1

2+4𝐴2
2𝑝6

3𝑚
𝑡)] −

2 𝐵0𝐵1𝐴2
2𝑝6

2

2 𝐴2
2𝐵0

2𝑝6
2−

9 𝐵1
4𝑝4

2

128

}

−1

.  
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6.13. Set XI 

 𝜆 =
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
,    𝜇 =

64 𝑝2𝑝6−15 𝑝4
2

128𝑝6
, 𝐴0 =

32 𝐴2𝐵0𝑝6(8 𝐴2𝐵0𝑝6−3 𝐵1
2𝑝4)+9 𝐵1

4𝑝4
2

256 𝐵1
2𝑝6

2𝐴2
,  (94) 

𝐴1 = 1/8 
16 𝐴2𝐵0𝑝6−3 𝐵1

2𝑝4

𝐵1𝑝6
,    𝑤1 =

256 𝐴2
2𝐵0

2𝑝6
2+9 𝐵1

4𝑝4
2

256 𝐴2
2𝐵1

2𝑝6
2 ,    𝑤2 = 2 

𝐵0

𝐵1
,    𝑤2

2 − 4𝑤1 = −
9 𝐵1

2𝑝4
2

64 𝐴2
2𝑝6

2,  

𝑢11(𝑥, 𝑡) = {
256𝐴2

2e−2𝜙(𝜂)𝐵1
2𝑝6

2+32e−𝜙(𝜂)𝐴2𝐵1𝑝6Υ1+32𝐴2𝐵0𝑝6(8𝐴2𝐵0𝑝6−3𝐵1
2𝑝4)+9𝐵1

4𝑝4
2

256𝐵1
2𝑝6

2𝐴2(𝐵0+𝐵1e
−𝜙(𝜂))

}

1

2
,      (95) 

where 𝜂 = 𝑥 −
𝑇

𝐵1
√3 𝐽𝐵1

2+4 𝐴2
2𝑝6

3𝑚
𝑡. As a result (Group 2), the periodic solution is given by  

𝑢11(𝑥, 𝑡) = {
256𝐴2

2Φ2𝐵1
2𝑝6

2+32Φ𝐴2𝐵1𝑝6Υ1+32𝐴2𝐵0𝑝6(8𝐴2𝐵0𝑝6−3𝐵1
2𝑝4)+9𝐵1

4𝑝4
2

256𝐵1
2𝑝6

2𝐴2(𝐵0+𝐵1Φ)
}

1

2
,                     (96) 

Υ1 = (16𝐴2𝐵0𝑝6 − 3𝐵1
2𝑝4),  

Φ = {
3

8

𝐵1
3𝑝4𝐴2𝑝6

2 𝐴2
2𝐵0

2𝑝6
2+

9 𝐵1
4𝑝4

2

128

tan [
3

16

𝐵1𝑝4

𝐴2𝑝6
(𝑥 −

𝑇

𝐵1
√3 𝐽𝐵1

2+4𝐴2
2𝑝6

3𝑚
𝑡)] −

2 𝐵0𝐵1𝐴2
2𝑝6

2

2 𝐴2
2𝐵0

2𝑝6
2+

9 𝐵1
4𝑝4

2

128

}

−1

.  

6.14. The graphical discussion and physical significance 

By selecting the appropriate values for the parameter, we 
were able to generate the desired types of solutions that indicate 
wave discrepancy. The analytical solutions are coded in maple 
and the parametric and sensitivity analysis are carried out using 
the codes. The parametric results are presented in Figs. 1–4. The 
present results from the simulations show that through an inherent 
property of auxiliary parameters for the adjustment and control of 
region and rate of convergence of approximate series solutions, 

the MEJM and rational exp(−ϕ(η))-expansion method have 
proven to be very efficient and capable techniques in handling 
non-linear engineering problems in wider ranges of parameters. 
The importance of this study lies in the actuality that it can serve 
as a base for the experimental work that we want to undertake on 
the plasma physics and crystal lattice theory. 

7. CONCLUSION 

On the basis of the constructed auxiliary functions, the MEJM, 

the rational exp(−ϕ(η))-expansion method and the solitary 
wave solutions by utilising TFFME were inspected. The mentioned 
equation is non-integrable. The impact of wave motion in plasma 
on the physical parameters including speed and amplitudes of 
solitary waves has been focussed. Then, the general form rational 
solutions to TFFME containing soliton, kink soliton, singular soli-
ton and periodic wave solutions were observed. We found plenty 
of exact solutions for two cases. The dynamical behaviour of 
results was investigated via graphical illustrations by using con-
sidered methods. Moreover, various important remarks about the 
physical meanings of solutions were presented. From these re-
sults, it may be seen that the MEJM and EEM are the power tools 
to solve such non-linear partial models arising in applied and 
engineering sciences. In the future, we can further study its soliton 
solutions, rogue wave solutions, solitary waves and symmetry, 
etc.  
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