Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using plasma-enhanced chemical vapor deposition (PECVD) to directly grow graphene nanowalls (GNWs) on silicon to preparate the solar cells is compatible with current industrial production. However, many defects in the GNWs hinder improvement of the power conversion efficiency (PCE) of solar cells. In this work, we found that the defects in GNWs can be reduced under the condition of keeping the appropriate sheet resistance of GNWs by simultaneously reducing the growth temperature and increasing the growth time. Then, a PCE of 3.83% was achieved by minimizing the defects in the GNWs under the condition of ensuring adequate coverage of GNWs on bare planar silicon. The defects in GNWs were further reduced by adding a poly(3,4-ethylenedioxythiophene) (PEDOT):Nafion passivation coating, and the PCE was significantly improved to10.55%. Our work provides an innovative path and a simple approach to minimize the defects in graphene grown directly on silicon for high-efficiency solar cells.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
125--134
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
autor
- Hebei Key Laboratory of Digital Medical Engineering, College of Electronic Information Engineering, Hebei University,Baoding 071002, China
autor
- Hebei Key Laboratory of Optic-electronic Information and Materials, National-Local Joint Engineering Laboratory of NewEnergy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Bibliografia
- [1] Hua CQ, Zhou SH, Zhou CW, Dou WD, Li HN, Lu YH, et al. Work function modulation of graphene with binary mixture of Cu and C60F36. Carbon. 2021;179:172–9; https://doi.org/10.1016/j.carbon.2021.04.022
- [2] Zhou J, Zhang J, Deng Y, Zhao H, Zhang P, Fu S, et al. Defect-mediated work function regulation in graphene film for high-performing triboelectric nano-generators. Nano Energy. 2022;99:107411; https://doi.org/10.1016/j.nanoen.2022.107411
- [3] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–10; https://doi.org/10.1038/nature07719
- [4] She Z, Uceda M, Pope MA. Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes. ACS Appl Mater Interfaces. 2022;14(8):10363–72; https://doi.org/10.1021/acsami.1c23356
- [5] Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X. 12.35% efficient graphene quantum dots/silicon hetero-junction solar cells using graphene transparent electrode. Nano Energy. 2017;31:359–66; https://doi.org/10.1016/j.nanoen.2016.11.051
- [6] Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay JJ, et al. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem Soc Rev. 2018;47:4981–5037; https://doi.org/10.1039/C8CS00067K
- [7] Rehman MA, Roy SB, Akhtar I, Bhopal MF, Choi W, Nazir G, et al. Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon. 2019;148:187–95; https://doi.org/10.1016/j.carbon.2019.03.079
- [8] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017;2:17032; https://doi.org/10.1038/nenergy.2017.32
- [9] Cheng H, Liu W, Liu Z, Yang Z, Ma D, Du H, et al. Emitter formation with boron diffusion from PECVD deposited boron-doped silicon oxide for high-efficiency TOPCon solar cells. Sol Energy Mater Sol Cells. 2022;240:111713; https://doi.org/10.1016/j.solmat.2022.111713
- [10] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, et al. Graphene-on-silicon schottky junction solar cells. Adv Mater. 2010;22(25):2743–8; https://doi.org/10.1002/adma.200904383
- [11] Liu SY, Zhou L, Yao LY, Chai LY, Li L. One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature. J Alloys Compd. 2014;612:126–33; https://doi.org/10.1016/j.jallcom.2014.05.129
- [12] Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, et al. 18.5% efficient graphene/GaAs van der waals heterostructure solar cell. Nano Energy. 2015;16:310–9; https://doi.org/10.1016/j.nanoen.2015.07.003
- [13] Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, et al. Toward clean and crackless transfer of graphene. ACS Nano. 2011;5(11):9144–53; https://doi.org/10.1021/nn203377t
- [14] Lu CC, Jin C, Lin YC, Huang CR, Suenaga K, Chiu PW. Characterization of graphene grown on bulk and thin film nickel. Langmuir. 2011;27(22):13748–53; https://doi.org/10.1021/la2022038
- [15] Liu J, Sun W, Wei D, Song X, Jiao T, He S, et al. Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Appl Phys Lett. 2015;106:043904; http://dx.doi.org/10.1063/1.4907284
- [16] Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, et al. Raman spectroscopy of graphene edges. Nano Lett. 2009;9(4):1433–41; https://doi.org/10.1021/nl8032697
- [17] Bhopal MF, Akbar K, Rehman MA, Lee DW, Rehman AU, Seo Y, et al. High-κ dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon. 2017;125:56–62; https://doi.org/10.1016/j.carbon.2017.09.038
- [18] Rehman MA, Akhtar I, Choi W, Akbar K, Farooq A, Hussain S, et al. Influence of an Al2O3 interlayer in a directly grown graphene-silicon schottky junction solar cell. Carbon. 2018;132:157–64; https://doi.org/10.1016/j.carbon.2018.02.042
- [19] Rehman MA, Roy SB, Gwak D, Akhtar I, Nasir N, Kumar S, et al. Solar cell based on vertical graphene nano hills directly grown on silicon. Carbon. 2020;164:235–43; https://doi.org/10.1016/j.carbon.2020.04.001
- [20] Kim M, Rehmana MA, Kanga KM, Wanga Y, Parkc S, Lee HS, et al. The role of oxygen defects engineering via passivation of the Al2O3 interfacial layer for the direct growth of a graphene-silicon Schottky junction solar cell. Appl Mater Today. 2022;26:101267; https://doi.org/10.1016/j.apmt.2021.101267
- [21] Li N, Zhen Z, Zhang R, Xu Z, Zheng Z, He L. Nucleation and growth dynamics of graphene grown by radio frequency plasmaenhanced chemical vapor deposition. Sci Rep. 2021;11:6007; https://doi.org/10.1038/s41598-021-85537-3
- [22] Wan L, Zhang C, Ge K, Yang X, Li F, Yan W, et al. Conductive Hole-selective passivating contacts for crystalline silicon solar cells. Adv Energy Mater. 2020:1903851; https://doi.org/10.1002/aenm.201903851
- [23] Jiao T, Liu J, Wei D, Feng Y, Song X, Shi H, et al. Composite transparent electrode of graphene nanowalls and silver nanowires on micropyramidal si for high-efficiency schottky junction solar cells. ACS Appl Mater Interfaces. 2015;7(36):20179–83; https://doi.org/10.1021/acsami.5b05565
- [24] Wu JB, Lin ML, Cong X, Liua XN, Tan PH. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. 2018;47(5):1822; https://doi.org/10.1039/C6CS00915H
- [25] Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126; https://doi.org/10.1063/1.1674108
- [26] Cançado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011;11(8):3190; https://doi.org/10.1021/nl201432g
- [27] Kim YS, Joo K, Jerng SK, Lee JH, Yoonde E, Chun SH. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography. Nanoscale. 2014;6(17):10100–05; https://doi.org/10.1039/C4NR02001D
- [28] Bi E, Chen H, Yang X, Ye F, Yin M, Han L. Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications. Sci Rep. 2015;5:13214; https://doi.org/10.1038/srep13214
- [29] Zhang R, Hollars DR, Kanicki J. High efficiency Cu(In,Ga)Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method. Jpn J Appl Phys. 2013;52:092302; http://dx.doi.org/10.7567/JJAP.52.092302
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-761e1f3f-9668-4168-922b-62a9d073731a