Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The performance of a novel airfoil-based tube with dimples is numerically studied in the present work. The effect of Reynolds number Re, dimples number N, relative depth H/D, and cross-distribution angle α on flow and heat transfer characteristics are discussed for Re in the range between 7,753 and 21,736. The velocity contour, temperature contour, and local streamlines are also presented to get an insight into the heat transfer enhancement mechanisms. The results show that both the velocity magnitude and flow direction change, and fluid dynamic vortexes are generated around the dimples, which intensify the flow mixing and interrupt the boundary layer, resulting in a better heat transfer performance accompanied by a certain pressure loss compared with the plain tube. The Nusselt number Nu of the airfoil-based tube increases with the increase of dimples number, relative depth, and Reynolds numbers, but the effect of cross-distribution angle can be ignored. Under geometric parameters considered, the airfoil-based tube with N = 6, H/D = 0.1, α = 0° and Re = 7,753 can obtain the largest average PEC value 1.23. Further, the empirical formulas for Nusselt number Nu and friction factor f are fitted in terms of dimple number N, relative depth H/D, and Reynolds number Re, respectively, with the errors within ± 5%. It is found that the airfoil-based tube with dimples has a good comprehensive performance.
Rocznik
Tom
Strony
art. no. e141984
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Shanghai Aircraft Design and Research Institute Environment Control and Oxygen System Department, China
autor
- College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
autor
- Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, China
autor
- Shanghai Aircraft Design and Research Institute Environment Control and Oxygen System Department, China
autor
- Shanghai Aircraft Design and Research Institute Environment Control and Oxygen System Department, China
Bibliografia
- [1] M. Kmiotek and A. Kucaba-Pital, “Influence of slim obstacle geometry on the flow and heat transfer in microchannels,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 111–118, 2018, doi: 10.24425/119064.
- [2] M. Ge, “Numerical investigation of flow characteristics over dimpled surface,” Therm. Sci., vol. 20, no. 3, pp. 903–906, 2016.
- [3] R. Maithani and A. Kumar, “Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube,” Exp. Heat Transfer, vol. 33, no. 2, pp. 1–22, 2019, doi: 10.1080/08916152.2019.1573863.
- [4] R. Vinze, A. Khade, P. Kuntikana, and M. Ravitej, “Effect of dimple pitch and depth on jet impingement heat transfer over dimpled surface impinged by multiple jets,” Int. J. Therm. Sci., vol. 145, no. 2, p. 105974, 2019, doi: 10.1016/j.ijthermalsci.2019.105974.
- [5] N.A. Kiselev, A.I. Leontiev, Y.A. Vinogradov, and A. Zditovets, “Effect of large-scale vortex induced by a cylinder on the drag and heat transfer coefficients of smooth and dimpled surfaces,” Int. J. Therm. Sci., vol. 136, pp. 396-409, 2019, doi: 10.1016/j.ijthermalsci.2018.11.005.
- [6] Z. Liang, S. Xie, L. Zhang, J. Zhang, Y. Wang, and Y. Yin, “Influence of geometric parameters on the thermal hydraulic performance of an ellipsoidal protruded enhanced tube,” Numer. Heat Transfer Part A, Appl., vol. 72, no. 2, pp. 153–170, 2017, doi: 10.1080/10407782.2017.135900.
- [7] L. Zheng, D. Zhang, Y. Xie, and G. Xie, “Thermal performance of dimpled/protruded circular and annular micro-channel tube heat sink,” J. Taiwan Inst. Chem. Eng., vol. 60, pp. 342–351, 2016, doi: 10.1016/j.jtice.2015.10.026.
- [8] L. Zhang, W. Xiong, J. Zheng, Z. Liang, and S. Xie, “Numerical analysis of heat transfer enhancement and flow characteristics inside cross-combined ellipsoidal dimple tubes,” Case Stud. Therm. Eng., vol. 25, p. 100937, 2021, doi: 10.1016/j.csite.2021.100937.
- [9] Y. Wang, Y. He, Y. Lei, and R. Li, “Heat transfer and friction characteristics for turbulent flow of dimpled tubes,” Chem. Eng. Technol., vol. 32, no. 6, pp. 956963, 2009, doi: 10.1002/ceat.200800660.
- [10] W. Liao, X. Liu, and H. Zhang, “Influence of number of elliptical dimples and their distribution on flow and heat transfer performance of tube,” J. Pressure Vessel Technol., vol. 37, no. 4, pp. 38–45,67, 2020, doi: 10.3969/j.issn.1001-4837.2020.04.006.
- [11] K. Zhang, F. Wang, and Y. He, “Numerical study on flow and heat transfer performance of a new type of biomimetic tube,” J. Eng. Thermophys., vol. 40, no. 2, pp. 375–381, 2019.
- [12] S. Xie, Z. Liang, L. Zhang, and Y. Wang, “A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples,” Int. J. Heat Mass Transfer, vol. 125, pp. 434–444, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.106.
- [13] H. Shi, H. Liu, J. Xiong, Y. Qiu, and Y. He, “Study on flow and heat transfer characteristics of an airfoil printed circuit heat exchanger with dimples,” J. Eng. Thermophys., vol. 40, no. 4, pp. 857–862, 2019.
- [14] R. Li, Y. He, P. Chu, and Y. Lei, “Numerical simulation of dimpled tube for heat transfer enhancement,” J. Eng. Thermophys., vol. 29, no. 11, pp. 1947–1949, 2008, doi: 10.3321/j.issn:0253-231X.2008.11.038.
- [15] F. Chen, L. Zhang, X. Huai, J. Li, H. Zhang, and Z. Liu, “Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil,” Nucl. Eng. Des., vol. 325, pp. 42–50, 2017, doi: 10.1016/j.nucengdes.2017.02.014.
- [16] S. Xie, Z. Liang, L. Zhang, and Y. Wang, “Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions,” Int. J. Heat Mass Transfer, vol. 122, no. JUL, pp. 602–613, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.01.106.
- [17] X. Zhang, Z. Liu, and W. Liu, “Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes,” J. Eng. Thermophys., vol. 58, no. 2, pp. 157–167, 2012, doi: 10.1016/j.ijthermalsci.2012.02.025.
- [18] Z. Cao, Z. Wu, H. Luan, and B. Sunden, “Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts,” Numer. Heat Transfer Part A, Appl., vol. 72, no. 1, pp. 21–39, 2017, doi: 10.1080/10407782.2017.1353386.
- [19] H. Usui, Y. Sano, K. Iwashita, and A. Isozaki, “Enhancement Effect for Heat Transfer by Combined Use of Internally Grooved Rough Surfaces and Twisted Tapes,” Kagaku Kogaku Ronbunshu, vol. 10, no. 3, pp. 280–286, 1984, doi: 10.1252/kakoronbunshu.10.280.
- [20] V. Gneilinski, “New equations for heat and mass-transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, pp. 359–368, 1976.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-761d31e5-f6f9-4223-afaf-dedd27445cc9