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Abstract
Evolutionary algorithms are one of the heuristic techniques used to solve task sequencing problems. An important example 
of such a problem is the issue of sequencing production tasks. The combinatorial optimization of task sequences allows the 
minimization of the cost or time of a set of production tasks by reducing the components of these values which are present in 
the transitions between tasks.

This paper aims to analyze the influence of the production nature expressed by a set of production task parameters and 
a definition of the task transition cost on the effectiveness of the modification of the evolutionary algorithm based on new direct-
ed stochastic mutation operators. The research carried out included the influence of the space dimension of the task parameters, 
the number of levels of the value of the cost function, and a definition of this function. The results obtained allow us to assess 
the effectiveness of the directed mutation in task sequencing for productions of various natures.
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1. Introduction

The most popular representative of the problem of task 
sequencing is the traveling salesman problem (TSP), 
which is a  very widely analyzed issue in the field of 
computer science (Kentli et al., 2013; Shi & Liu, 2021; 
Wan et al., 2020). However, this problem in the stan-
dard approach is a little different from the problem of 
sequencing production jobs. First, ‘cities’ in TSP are 
usually described with only two parameters that de-
scribe their location in a  two-dimensional space. Ad-
ditionally, the distance function is continuous-valued. 
There are some differences when it comes to sequenc-
ing production tasks. A  production task is often de-
scribed by more parameters, and some of these param-

eters are discrete ones. Also, the function of the cost of 
transition between tasks (most often related to retooling 
the production line) is usually discontinuous and has 
very different definitions (Kentli et al., 2013).

A  representative example is steel production in 
the continuous casting process, shown in Figure 1. By 
sequencing tasks, we can minimize two values: the 
pause time between tasks and the financial cost of im-
plementing the transition between tasks. Since these 
values are related to each other, we will refer to them 
by the collective term ‘cost’ for the sake of simplic-
ity. Of course, there is also a cost for completing the 
tasks themselves, but this cost cannot be reduced by 
optimizing the task sequence (Ramstorfer & Delane 
de Souza, 2022).
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Fig. 1. Continuous steel casting process

The ingot tonnage, steel grade, and size of the in-
got describes each continuous steel casting task. The 
first parameter is a continuous parameter that propor-
tionally affects the constant component of the task 
cost. We cannot influence the constant component by 
sequencing production tasks. Another parameter, steel 
grade, is essentially a set of continuous parameters that 
describe the chemical composition of the steel. In the 
case of these parameters, we have the possibility of 
influencing the variable cost of task implementation 
related to the cost of transition between tasks. There 
is no additional cost of a change in steel grade when 
switching between grades with a similar chemical com-
position (Ramstorfer & Delane de Souza, 2022). 

Otherwise, there is a need to remove the steel rem-
nants from the previous smelting, which means a  step 
(discrete) increase in the cost of transition between tasks. 
The cost increases abruptly again when the ladle lining 
has to be replaced. Thus, we have two discrete cost lev-
els for a continuous chemical composition change. The 
last task parameter, the ingot format parameter, is a dis-
crete parameter with values selected from a set of for-
mats (e.g. round, octagonal, square, rectangular). Each 
format change implies a fixed cost of rebuilding the cast-
ing system output (Vijayaram et al., 2014).

Of course, there is a  huge amount of variety in 
the types of production, and there are also productions 
where the parameters are continuous, and the cost func-
tion is continuous. We are then dealing with an issue 
analogous to the standard traveling salesman problem. 

A huge number of task sequencing algorithms have 
been created to date, with the lion’s share dedicated to the 

standard traveling salesmen problem. These include ex-
act algorithms (e.g. integer linear formulations or branch-
and-bound algorithms) (Laporte, 1992), the ant colony 
optimization algorithm (Garcia-Martínez et al., 2007), 
the 2-opt algorithm (Englert et al., 2014), the greedy 
algorithm (Bang-Jensen et al., 2004), the cover tree tra-
versal algorithm (Zhang & Xu, 2018) or local search al-
gorithms (Levin & Yovel, 2014). One of the most pop-
ular types of task sequence optimization algorithms are 
evolutionary algorithms (Gao et al., 2020). Although they 
often have lower performance than the others mentioned, 
they provide considerable flexibility in terms of the pos-
sible task parameters to be considered. We can use con-
tinuous and discrete parameters and set elements. In the 
case of some productions, in addition to sequencing, they 
can simultaneously optimize the parameters of individu-
al tasks (not just the order of transitions between tasks). 
What is important in the practice of implementing task 
sequencing systems in production plants, they allow for 
a simple consideration of specific customer requirements 
in the optimization criterion and constraints.

The paper concerns an analysis of the influence of 
the parameters of a production task and a cost function 
definition on the effectiveness of the new modification 
of the evolutionary algorithm. The evolutionary algo-
rithm is usually based on genetic operators of crossover 
and mutation. However, in combinatorial optimization 
of the sequence, basic crossover operators strongly de-
grade the sequence of tasks, and it is necessary to intro-
duce elaborate mechanisms to repair these sequences, 
often with a  low degree of efficiency. Although more 
advanced operators, such as partially matched cross-
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over (PMX) or cycle crossover (CX) (Nirmala & Ram-
prasad, 2012), do not need a repair function, the quality 
of their implementation may affect experiment results. 
For this reason, the modification of the evolutionary 
algorithm described in the paper completely abandons 
the crossover operator in favor of the more effective 
version of the mutation operator. An additional advan-
tage of such an approach is the presence in the obtained 
results of only the real influence of the analyzed muta-
tion operators, without the influence of the crossover 
operator imperfection.

Many different implementations of mutation op-
erators have been developed so far for the problem 
of task sequencing, e.g., displacement mutation (Mi-
chalewicz, 2013), exchange mutation (Banzhaf, 1990), 
insertion mutation (Fogel, 1988), simple inversion 
mutation (Holland, 1992), inversion mutation (Fogel, 
1990), scramble mutation (Syswerda, 1991), inverted 
exchange mutation, inverted displacement mutation 
(Deep & Mebrahtu, 2011), twors mutation, center in-
verse mutation (CIM), reverse sequence mutation 
(RSM), throas mutation, partial shuffle mutation (PSM) 
(Abdoun et al., 2012). The listed mutation operators, 
despite their diversity, have one common feature: the 
determination of points in the task chain for exchang-
ing segments or tasks is completely random. 

Only recently have solutions been developed 
where mutations account for the cost value of connect-
ing between tasks. Such methods that consider the cost 
of transition between tasks have been presented recent-
ly in the paper (Hassanat et al., 2016), where several 
presented mutations are based on choosing ‘the worst 
task’, defined as the task with the highest cost of transi-
tion. Mutable tasks are selected in a completely deter-
ministic manner.

The paper analyzes a  new kind of mutation de-
veloped in our department, the probability of which is 
related to the cost of transition between tasks. How-
ever, the location of the mutation is chosen random-
ly, as opposed to the completely deterministic solution 
mentioned. Here, a solution analogous to the selection 
operation in the evolutionary algorithm is used. By se-
lecting the coefficients of selection power, it is possible 
to obtain a completely random (blind) mutation, a com-
pletely deterministic mutation, or a stochastic mutation 
characteristic for the new solution, taking into account 
the cost of connecting between tasks.

The main goal of this paper is to analyze the influ-
ence of the nature of scheduled production expressed 
by a set of production task parameters and a definition 
of the task transition cost on the effectiveness of the 
new modification of the evolutionary algorithm based 
on new directed stochastic mutation operators. The pre-

sented research included the analysis of the influence of 
the number of task parameters (solution space dimen-
sion), the level of discontinuity of the cost function and 
its definition on the obtained results. These investiga-
tions allow us to assess the influence of the nature of 
scheduled production on the effectiveness of the algo-
rithm developed.

2. A modified evolutionary algorithm  
for task sequencing

The algorithm analyzed is a modification of the stan-
dard evolutionary algorithm (Fig. 2). The algorithm op-
erates on a population of individuals which represents 
different versions of the task sequence (Malik, 2019). 

Fig. 2. Flow diagram of the evolutionary algorithm
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The initial population is generated randomly. 
Then, the value of the fitness function is determined for 
each individual in the population. Before the main part 
of the algorithm starts, the stop condition is checked. 
The condition may refer to the number of iterations of 
the main algorithm loop, the global optimization time, 
and/or the achievement of the assumed value of the fit-
ness function. However, in the case of task sequencing, 
we usually cannot estimate such a value. The result of 
the algorithm’s work is the best individual found during 
all iterations of the algorithm.

Then, a new generation of individuals is created 
in the selection operation. Among the many selection 
methods, proportional (1) and ranking (2) selection are 
the most popular (Malik, 2019).

The main difference between them is that the for-
mer takes into account the exact value of the fitness 
function in estimating the selection probability of an 
individual to the new generation, and the latter is based 
solely on its position in the ranking.
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where: Pi – the probability of selection of the i-th indi-
vidual; Fi – fitness of the individual; ri – individual po-
sition in the ranking (the best individual – position 1); 
Fmin, Fmax – fitness of the best and worst individuals; 
N – population size; a – factor of selection strength.

Due to the most frequent use of the roulette 
wheel selection method, the determined probabilities 
are usually normalized. Then, a  distribution of the 
frequency of individuals in the new generation is ob-
tained which is similar to the distribution of the prob-
ability of selection.
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where Pj
(n) is the normalized selection probability of the 

j-th individual.

The a factor allows one to control the strength of 
selection. In the case of a value of zero, the selection 
is blind, and all individuals have the same chance to 
pass to the new generation. In the case of assuming the 
infinite value of this coefficient (in practice, very large), 
only the best individual passes to the new generation. 
The selection is then completely deterministic. The 
value in the range (0, ∞) signifies the directed random 
selection. Usually, it is assumed to be equal to 1.

After selection, genetic operators modify individ-
uals in the new generation. As mentioned in the intro-
duction to this paper, the discussed algorithm does not 
use the crossover operator, because it may cause a large 
degradation of the task chain or needs to implement 
a more complicated crossover operator (Malik, 2019; 
Nirmala & Ramprasad, 2012). The adopted methodol-
ogy allowed us to isolate only the influence of the de-
veloped and analyzed mutation operator in the results. 

Before discussing the new method of mutation, it 
is necessary to introduce the method of coding the task 
sequence in the individual’s chromosome. It is a cycli-
cal graph (Fig. 3) that will be opened only after the 
optimization is completed at the location of the most 
expensive connection. In the diagram, the cost of a con-
nection (transition between tasks) is expressed as its 
length. The cut connection does not have an arrow. 

The figure shows an example of such a chromo-
some for the continuous casting of steel. Within this 
process, each production task has only two parameters 
that affect the cost of connections: steel grade and in-
got format. Regardless of the number and type of task 
parameters, the chromosome contains the number of 
genes equal to the number of tasks and encoded by in-
tegers. As shown in the figure, the cost of connection is 
a function of the parameters of adjacent tasks – here, 
changes in the steel grade and/or the ingot format.

In the case of a real continuous steel casting pro-
cess, the function can be defined with a set of simple 
rules of the type IF GRADE1 <> GRADE2 AND 
FORMAT1 = FORMAT2 THEN COST = 1000.00 
USD. In the case of other types of production, this 
function must often be described not only by rules, but 
also by linear or non-linear relationships that take into 
account the values of the task parameters.

Fig. 3. Chromosome coding for the task sequence – an example for continuous casting of steel
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As discussed in the introduction to the paper, in the 
method of mutation developed thus far, regardless of 
the way tasks are rearranged in their course, the location 
of the sequence cut is most often random (Abdoun et al., 
2012; Banzhaf, 1990; Deep & Mebrahtu, 2011; Fogel, 
1988, 1990; Holland, 1992; Michalewicz, 2013; Syswer-
da, 1991) or, as is the case in recent studies, completely de-
terministic (the worst connection) (Hassanat et al., 2016). 
Our paper analyses a mutation, the location of which is 
randomized but takes into account connection costs. 

In the case of new mutation operators, analogical-
ly for selection methods, an idea and a mathematical 
description were used. Two variants were proposed: 
one based on the proportional selection method (4) and 
the ranking selection method (5).
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where: Pj
(C) – cutting probability of the j-th connection; 

Cj – cost of the connection; rj
(C) – position of connec-

tion in the ranking (the best connection – position 1); 
Cmin,  Cmax – cost of the most expensive and cheapest 
connection); M – the number of connections equal to 
the number of tasks (in the cyclic graph); a – factor of 
the randomness factor.

current_task_sequence := [T3, T2, T1, T5, T4, …]

new_task_sequence := [] 
chosen_indexes := [] 

repeat:

   x := random positive number |0,1| 
   if (x < Pj) then 
     chosen_indexes.push(j) 
until (chosen_indexes.length == 3) 

chosen_indexes.sort() 

for i := chosen_indexes[0] to chosen_indexes[1]:

  new_task_sequence.push(current_task_sequence[i])

end for 

for i := chosen_indexes[2] to current_task_sequence.length:

  new_task_sequence.push(current_task_sequence[i])

end for

 
for i := 0 to chosen_indexes[0]:

  new_task_sequence.push(current_task_sequence[i])

end for

 
for i := chosen_indexes[1] to chosen_indexes[2]:

  new_task_sequence.push(current_task_sequence[i])

end for

Fig. 4. Pseudocode for selecting three connections for mutation and the task sequence rearrangement
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Factor a  equals to 0 makes it possible to obtain 
a  fully random mutation (hereinafter referred to as 
a blind mutation) which is well-known in the literature 
(Abdoun et al., 2012; Banzhaf, 1990; Deep & Me-
brahtu, 2011; Fogel, 1988, 1990; Holland, 1992; Mi-
chalewicz, 2013; Syswerda, 1991). Taking a very large 
value (approximately infinite) results in a deterministic 
mutation (Hassanat et al., 2016) – always choosing the 
connection with the highest cost.

Of course, the methods of the mutation have not 
been defined in the form of formulas (4) and (5) so far. 
Instead, only the mechanics of their implementation 
are described without explicitly defining the probabili-
ty value of the separation of individual connections in 
the sequence. Basing our mutation on an explicit prob-
ability makes it possible to take into account the cost 
of the connection while maintaining the randomness of 
the sequence break controlled by the parameter a. Such 
an intermediate implementation was not possible in the 
above-mentioned types of mutation, which were either 
completely random or fully deterministic.

The method of mutation is complemented by the 
way tasks are arranged in sequence. After determining 
the cut probabilities based on formulas (4) and (5) and 
their normalization, three cut points are selected for the 
cyclic task graph. The process of selecting the three 
connections for mutation is presented in Figure 4. Three 
sequence parts are obtained, and then two of them are 
swapped (without changing the order of tasks in these 
parts). After the mutation has been performed on the 
population, the next cycle of the algorithm begins.

The investigations described in the paper had two 
goals. The first goal was to determine how the degree of 
mutation determinism and randomness affects the effec-
tiveness of the evolutionary task sequencing algorithm. 
The second was to determine the influence of the nature 
of sequenced production on this effectiveness. These 
goals were achieved on the theoretical, systematized 
level by assessing the impact of the dimensionality of 
the task parameter space, the level of discretization, 
and the definition of the cost function for transitions be-
tween tasks. As a result, it was possible to analyze the 
entire spectrum of existing types of production.

3. Experiments and discussion of  
the results

The aim of the experiments was to verify the hypoth-
esis that the use of the proposed mutation operators 
would increase the efficiency of the evolutionary algo-
rithm for the solution of the problem of production task 
sequencing for any type of production.

In order to enable the most extensive analysis, 
experiments were based on a virtual production mod-
el, which allows the freedom to select a set of param-
eters and define the cost of transition between tasks. 
Of course, such a  model is only a  certain theoretical 
representation of real production processes.

The research was carried out for a  synthetic se-
quence of tasks described by a set of continuous param-
eters. Parameter values were normalized and ranged 
from 0 to 1 (uniform distribution). The adaptation 
function was the sum of the transition costs between 
all tasks in the sequence, excluding the cost of the most 
expensive connection. As mentioned in the previous 
section of this paper, after the optimization phase, the 
cyclic graph representing the chromosome is cut open 
at this location.

For the study, the cost of transition between tasks 
was defined based on the Minkowski distance (Singh 
et al., 2013):
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where: Cj – cost of the j-th connection; pj,k – the k-th 
parameter of the j-th task; K – number of parameters; 
b – is the order of the norm.

To compare the results for a different number of 
parameters and different exponents of the Minkowski 
distance, a normalizing divisor K was introduced. This 
made it possible to equalize the maximum cost of the 
connection to 1. 

The research used a  discretized connection cost 
function Cj

(d) with a controlled number of levels:
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where d is the number of discretization levels (min. 2).

The total cost of executing a sequence (the fitness 
function for the optimization) is defined by the formula:
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where: C – total cost of a sequence; N – count of con-
nections between tasks.

Note that after optimizing according to the for-
mula, the cost of the most expensive link is subtracted 
since this is where the cyclic chromosome graph will 
always be cut open.
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The first experiment concerned the influence of 
the number of parameters of a  task on the effective-
ness of the proposed adaptive mutation. The results 
were compared with the classic blind mutation and 
with a completely deterministic mutation. In the case 
of the adaptive mutation, a variant modeled on propor-
tional and ranking selection was taken into account. 
In the experiment, the cost of transition between tasks 
was defined based on the Euclidean distance (expo-
nent 2 at the Minkowski distance). The cost function 
was a continuous function. The analysis was performed 
for a task sequence with a size of 1000 and the number 
of iterations of the evolutionary algorithm equal 1000 
and 2000. The series of experiments carried out showed 
that for 2000 iterations, all of the analyzed algorithms 
achieved the minimum value of the criterion, and we 
can observe the stabilization of the solution. To illus-
trate the dynamics of optimization, we also present the 
state of the optimization in the middle of this period 
(for 1000 iterations).

As can be seen in Figure 5, the increase in the 
number of parameters describing the task increases 
the achieved criterion value. The deterioration of the 
optimization conditions is related to the increase in 
the statistical distance between tasks caused by the in-
crease in the dimension of parameter space. This phe-
nomenon has not been fully eliminated by the divisor 
proposed in the cost definition (6). For the analyzed 
range of the number of parameters, it can be observed 
that the values of the criteria for each type of muta-
tion tend to its individual asymptote. However, it can 
be concluded from this experiment that regardless of 
the number of parameters describing the task for se-

quenced production, the new mutation operators al-
low us to get a lower global cost (criterion). The rank-
ing mutation is distinguished here by its effectiveness. 
The completely deterministic mutation turned out 
to be the worst and in this case this is likely due to 
the increased risk of being stuck at a local minimum 
during optimization. This is confirmed by the lack of 
improvement between the level of the criterion after 
1000 (Fig. 5a) and after 2000 (Fig. 5b) iterations of 
the optimization process.

The second experiment concerned the impact of 
the number of levels of values of the cost function on 
the effectiveness of the analyzed mutations. This allows 
one to reflect on different types of production. For ex-
ample, in continuous steel casting, any change in in-
got format always generates a fixed single rebuild cost. 
In turn, in the case of production based on machining, 
changes in tool settings often translate into a propor-
tional, continuous increase in the time cost of transi-
tion between tasks. As in the previous experiment, the 
Euclidean definition of the cost of transition between 
tasks was adopted, and the research was carried out for 
a sequence of 1000 tasks. 

The analysis started with the lowest possible num-
ber of levels of the cost function value. Two levels of 
cost mean only two possibilities: There is no cost, and 
there is a cost of transition (as for a format change in 
the steel casting process). The analysis was complet-
ed at 64 levels because there were no further changes 
for each type of mutation. It can be assumed that a fur-
ther increase in the number of levels until a continuous 
function is obtained will no longer affect the obtained 
criterion value. 

Fig. 5. Influence of the number of parameters (1–10) of the production task on the effectiveness of  
various types of mutation after 1000 and 2000 iterations
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This time (see Fig. 6), apart from minor distur-
bances, we did not observe any influence of the tested 
factor. At the same time, the order of the efficiency of 
individual mutations has not changed. The new muta-
tion operators made it possible to obtain the lowest cost 
of executing the task sequence.

In order to broaden the comparative analysis of 
different types of mutations, the third experiment was 
based on the study of the impact of a distance defini-
tion on the transition cost between tasks. The basing of 
the definition of cost on Minkowski distance allowed 
control of the b-exponent of this measure (6). This 
made it possible to include in the analysis the distance 
that favors changes in large parameters (the Euclidean 
distance, b equal to 2), the distance that proportional-

ly treats the differences of individual parameters (the 
Manhattan distance, b equal to 1), and the distance 
that favors small parameter changes (with the b expo-
nent 0.5). Of course, the analysis carried out is purely 
theoretical. However, it increases the representative-
ness of its results for various actual productions.

As shown in Figure 7, the order of effectiveness 
of the various mutation operators has not changed. In 
the investigated range of the exponent b we are dealing 
practically with a linear dependence of effectiveness on 
its value. This suggests a linear increase in the statistic 
distance between tasks as a function of the value of the 
coefficient b. The latter study confirms the superiority 
of adaptive mutation operators over operators previ-
ously described in the literature.

Fig. 6. Influence of the number of levels of cost functions (2–64) on the effectiveness of various types of mutations

Fig. 7. Influence of the cost definition (the Minkowski distance exponent) on the effectiveness of various mutations
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4. Conclusions

The article presents the concept of new mutation oper-
ators dedicated to evolutionary task scheduling, with 
a  theoretical analysis of the impact of the nature of 
production on the efficiency of these operators. The 
aforementioned nature of the production was expressed 
here by the structure of parameters describing the pro-
duction task and the definition of the transition cost 
function between tasks. The results of quite a detailed 
analysis confirmed unequivocally that the proposed 
mutation operators allow for obtaining a much lower 
cost of implementing a  sequence of production tasks 
in comparison to classical random and deterministic 
methods and under various conditions. 

The analysis carried out showed that, depending 
on the parameters of the tasks and the definition of the 
cost function:

	– the new ranking mutation allowed for a reduction 
of the global cost in the range of 19% to 86% in 
relation to the most popular, blind mutation;

	– the new proportional mutation allowed for a  re-
duction of the global cost in the range of 5% to 
67% in relation to the blind mutation;

	– the ranking mutation allowed for a  reduction of 
the global cost in the range of 28% to 92% in com-
parison to the fully deterministic mutation;

	– the proportional mutation allowed for a reduction 
of the global cost in the range of 15% to 82% in 
comparison to the deterministic mutation.

The breadth of the analysis carried out allows us 
to assume that, in the case of real production tasks, 
these new mutation operators will also show their ad-
vantage.

The presented study deliberately abandoned the 
use of the crossover operator, focusing on the mu-
tation operator. However, it seems advisable to also 
continue research in the direction of applying the idea 
of a directed but random selection of the point of in-
tersection of the task sequence for the crossover op-
erator.
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