PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Definition of Mass Spring Parameters for Knitted Fabric Simulation Using the Imperialist Competitive Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie parametrów masowo sprężystych dla symulacji struktur dzianych przy zastosowaniu imperialistycznego algorytmu konkurencji
Języki publikacji
EN
Abstrakty
EN
The 3D simulation of fabrics is an interesting issue in many fields, such as computer engineering, textile engineering, cloth design and so on. Several methods have been presented for fabric simulation. The mass spring model, a typical physically-based method, is one of the methods for fabric simulation which is widely considered by researchers due to rapid simulation and being more consistent with reality. The aim of this paper is the optimization of mass spring parameters in the simulation of the drape behaviour of knitted fabric using the Imperialist Competitive Algorithm. First a mass spring model is proposed to simulate the drape behavior of knitted fabric. Then in order to reduce the error value between the simulated and actual result (reducing the simulation error value), parameters of the mass spring model such as the stiffness coefficient, damping coefficient, elongation rate, topology and natural length of the spring are optimized using the Imperialist Competitive Algorithm (ICA). The ICA parameters are specified using the Taguchi Design of Experiment. Finally fabrics drape shapes are simulated in other situations and compared with their actual results to validate the model parameters. Results show that the optimized model is able to predict the drape behavior of knitted fabric with an error value of 2.4 percent.
PL
Celem niniejszej pracy jest optymalizacja parametrów masowo-sprężystych w symulacji układalności struktur dzianych przy wykorzystaniu imperialistycznego algorytmu konkurencji. Zaproponowano model mas i sprężyn symulujących zachowanie dzianin. Następnie, dla polepszenia korelacji pomiędzy strukturami teoretycznymi a rzeczywistymi, określone parametry modelu, takie jak: współczynnik sztywności, współczynnik tłumienia, wydłużenie, topologia i naturalna długości sprężyny zoptymalizowano posługując się imperialistycznym algorytmem konkurencji (ICA). Parametry określono przy użyciu planowania eksperymentu metodą Taguchi. Przedstawiono i porównano symulacje układalności z rzeczywistą układalnością dzianin. Stwierdzono, że opracowany model pozwala na przewidywanie układalności dzianin z dokładnością do 2,4%.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Yazd University, Textile Engineering, Yazd, Iran
autor
  • Yazd University, Textile Engineering, Yazd, Iran
Bibliografia
  • 1. Weil J. The Synthesis of Cloth Objects. Computer Graphics 1986; 20: 49–54.
  • 2. Gan L, Ly N G and Steven G P. A Study of Fabric Deformation Using Nonlinear Finite Elements. Text Research J 1995; 65: 660–668.
  • 3. Ascough J, Bez H E and Bricis A M. A Simple Beam Element, Large Displacement Model for the Finite Element Simulation of Cloth Drape. J Text Inst 1996; 87: 152–165.
  • 4. Aono M. A wrinkle propagation model for cloth. Computer Graphics around the world. Proceedings CG International. 7-10 May 1996, Japan, Tokyo, pp.96-115.
  • 5. Etzmuss O, Keckeisen M and Strasser W. Fast finite element solution for cloth modeling. In Proceedings of the Pacific Conference on Computer Graphics and Applications. Alberta, 8-10 Oct 2003, pp.244-251.
  • 6. Eberhardt B, Weber A and Strasser W. A Fast, Flexible Particle-System Model for Cloth Draping. IEEE Computer Graphics & Applications 1996; 16: 52-59.
  • 7. Zhong Y Q and Wang S Y. Cloth Modeling Based on Particle System. J Dong Hua University 2001; 18: 41–44.
  • 8. Dai X, Li Y and Zhang X. Simulation Anisotropic Woven Fabric Deformation with a New Particle Model. Text Research J 2003; 73: 1091–1099.
  • 9. Provot X. Deformation Constraints in a Mass-spring Model to Describe Rigid Cloth Behavior. Proceeding of Graphics Interface. Quebec, Canada, pp. 8-11 May, 1995, pp.147-155.
  • 10. Eberhardt B, Weber A and Strasser W. A Fast, Flexible, Particle-System Model for Cloth Draping. IEEE Computer Graphics & Applications 1996; 6: 52–59.
  • 11. Baraff D and Witkin A. Large Steps in Cloth Simulation. Computer Graphics, Orlando, 19-24 July 1998, pp.43-54.
  • 12. Vassilev T.I and Spanlang B. Efficient Cloth Model for Dressing Animated Virtual People. Vis Comp 2000; 17: 147–157.
  • 13. Dai X, Li Y and Zhang X. Simulation Anisotropic Woven Fabric Deformation with a New Particle Model. Textile Research Journal 2003; 73: 1091–1099.
  • 14. Meibner M and Eberhardt B. The Art of Knitted Fabrics, Realistic and Physically Based Modelling of Knitted Patterns. Computer Graphics Forum 1998; 17: 355-362.
  • 15. Araujo M, Fangueiro R and Hong H. Modeling and Simulation of the Mechanical Behavior of Weft-Knitted Fabrics for Technical Applications. Part II: 3D Model Based on the Elastic Theory. Autex Research J 2003; 3: 166–172.
  • 16. Ji F, Li R and Qiu Y. Simulate the dynamic draping behavior of woven and knitted fabrics. J of Industrial Text 2006; 35: 201–215.
  • 17. Chen Y, Lin S and Ahong H. Realistic Rendering and Animation of Knitwear. IEEE Transactions on Visualization and Computer Graphics 2003; 9: 43-55.
  • 18. Durupınar F and Gudukbay U. A Virtual Garment Design and Simulation System. In: 11th International Conference Information Visualization, Zurich, July 4-6 2007. pp.862-870.
  • 19. Louchet J, Rovot X and Crochemore D. Evolutionary identification of cloth animation models. In: Proceedings of the Eurographics Workshop in Maastricht. Netherlands, 2-3 September 1995, pp.44-54.
  • 20. Bianchi G, Harders M and Szekely G. Mesh Topology Identification for Mass-Spring Models. Medical Image Computing and Computer-Assisted Intervention 2003; 2878: 50-58.
  • 21. Bianchi G, Solenthaler B, Szekely G and Harders M. Simultaneous Topology and Stiffness Identification for Mass-Spring Models Based on FEM Reference Deformations. Medical Image Computing and Computer-Assisted Intervention 2004; 3217: 293-301.
  • 22. Han F, Stylios G.K and Watt H. 3D modelling, simulation and visualization techniques for drape textiles and garments. Woodhead Publishing Series in Textiles. Cambridge, 2009, pp. 94.
  • 23. Mongus D, Repnik B, Mernik M and Zalik B. A hybrid evolutionary algorithm for tuning a cloth-simulation model. Applied Soft Computing 2012; 12: 266–273.
  • 24. Vassilev T. Efficient Cloth Model and Collision Detection for Dressing Virtual People In: Proceedings ACM/EG Games Technology Conference 2001; 1-10.
  • 25. Shou Z, Yu B, Chen G, Cai H and Liu Q. Key Designs in Implementing Online 3D Virtual Garment Try-on System, In: Sixth International Symposium on Computational Intelligence and Design, Hangzhou, 28-29 Oct 2013, pp. 156-159.
  • 26. Hu J, Huang W, Yu K, Huang M and Li J. Cloth Simulation with a Modified Implicit Method Based on a Simplified Mass-Spring Model. Applied Mechanics and Materials 2013, 373-375: 1920-1926.
  • 27. Li Y, Chern L, Kim JD and Li X. Numerical Method of Fabric Dynamics Using Front Tracking and Spring Model. Common Computer Physic 2013, 5: 1-24.
  • 28. Huang W, Hu J, Yu K, Wang Y and Jiang M. Cloth Simulation Based on Simplified Mass-Spring Model. Journal of Electrical Engineering 2014, 12: 3811-3817.
  • 29. Zhenfang C and Bing H. Research of Fast Cloth Simulation Based on Mass-Spring Model. National Conference on Information Technology and Computer Science, 20-22 August 2012, pp. 323-327.
  • 30. Oh S, Ahn J and Wohn K. A New Implicit Integration Method for Low Damped Cloth Simulation. In: the 5th Korea-Israel Bi-National Conference on Geometric Modeling and Computer Graphics, 2012, pp. 115-121.
  • 31. Wenhsiao S and Chen RQ. A Method of Drawing Cloth Patterns With Fabric Behavior. In: Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, 16-18 April 2006, pp. 635-640.
  • 32. Ye J, Webber RE and Wang Y. A reduced unconstrained system for the cloth dynamics solver. Visual Computer 2009, 25: 959–971.
  • 33. Chapra S, Canle R. Numerical methods for engineers. Mc Graw-Hill, 2010.
  • 34. Norton RL. Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. 3td ed, New York: McGraw-Hill, 2003, p.123.
  • 35. Ebrahimi S and Payvandy P. Optimization of the Link Drive Mechanism in a Sewing Machine Using Imperialist Competitive Algorithm. International Journal of Clothing Science and Technology 2014; 26: 247-260.
  • 36. Krishankant A, Tanej J, Bector M and Kumar R. Application of Taguchi Method for Optimizing Turning Process by the effects of Machining Parameters. International Journal of Engineering and Advanced Technology 2012; 2: 2249–8958.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7613bff7-fe30-44dd-b5b3-d65597734d3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.