PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proteomic profile to explain the mechanism of the Bacillus cereus-phosphate mineral interaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacillus cereus bacteria and their by-products were used as surface-active agents for surface hydrophobicity of the apatite in the flotation process leading to phosphate ores’ enrichment. Recently, proteomics is used to investigate the biochemical processes through discovering new proteins or investigating protein-protein interactions. In this work, we investigated the physicochemical behavior of pure apatite and quartz minerals in the presence of Bacillus cereus using zeta-potential, FTIR, and hydrophobicity measurements. Our results indicated that isoelectric point (IEP) occurred at pH 4.7 for apatite and 2.1 for quartz mineral. Bacillus cereus treatment decreased IEP of apatite to 1.8; while there was no significant change in IEP value of quartz. We used comprehensive proteomic profile analysis of Bacillus cereus in the presence of apatite mineral to identify the biological mechanism and molecules involved in such enrichment capacity. Our data identified the up-regulated Surface Layer (S-Layer) protein in this bacterial strain to be associated with the best mineral yield.
Rocznik
Strony
s. 136--150
Opis fizyczny
Bibliogr. 56 poz., rys. kolor.
Twórcy
  • Mineral Processing Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo, Egypt
  • Mineral Processing Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo, Egypt
  • Biotechnology Program, Zoology Department, Faculty of Science, Port-Said University, Egypt
Bibliografia
  • ABDALLAH, S.S., EL-SHATOURY, E.H., ABDEL-KHALEK, N.A., YOUSSEF, M.A., SELIM, K.A., IBRAHIM, M.K., ELSAYED, S.M., 2018. Bio-Flotation of Egyptian Siliceous Phosphate Ore Using Bacillus cereus. Proceedings of the 4th World Cong. Mech., Chem. & Mater. Eng. (MCM'18), Spain, 2018, MMME 114, 1-8.
  • ATTWOOD, S.J., KERSHAW, R., UDDIN, S., BISHOP, S.M., WELLAND, M.E., 2019. Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces. Journal of Materials Chemistry B, 7(14), 2349-2361.
  • BHARAT, T.A., VON KÜGELGEN, A., ALVA, V., 2020. Molecular Logic of Prokaryotic Surface Layer Structures. Trends in microbiology, 10,1-11.
  • BOUDJEMA, L., LONG, J., PETITJEAN, H., LARIONOVA, J., GUARI, Y., TRENS, P., SALLES, F., 2020. Adsorption of volatile organic compounds by ZIF-8, Cu-BTC and a Prussian blue analogue: A comparative study. Inorganica Chimica Acta, 501, 119316, ISSN 0020-1693.
  • BRADFORD, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-54.
  • BRUNEEL, O., MGHAZLI, N., SBABOU, L., HÉRY, M., CASIOT, C., FILALI-MALTOUF, A., 2019. Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration, 205, 106327.
  • CAI, S., WU, C., YANG, W., LIANG, W. , YU, H., LIU, L., 2020. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 9(1), 971-989.
  • CARNIELLOM, V., PETERSON, B.W., VAN DER MEI, H.C., BUSSCHER, H.J., 2018. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 261, 1-14.
  • CHANDRA, P., ENESPA, SINGH, R. , ARORA, P.K., 2020. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact, 19(169), 1-42.
  • CHANDRAMOHAN, A., DUPRAT, E., REMUSAT, L., ZIRAH, S., LOMBARD, C, KISH, A., 2020. Novel mechanism for surface layer shedding and regenerating in bacteria exposed to metal-contaminated conditions. Frontiers in microbiology, 9, 3210.
  • COMBES, C., CAZALBOU, S., REY, C., 2016. Apatite Biominerals. Minerals, 6(2), 34.
  • DEO, N., NATARAJAN, K.A., 1998. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. International Journal of Mineral Processing, 55(1), 41-60.
  • DERHY, M., TAHA, Y., HAKKOU, R., BENZAAZOUA, M., 2020. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals, 10, 1109.
  • DRAMSI, S., BIERNE, H., 2017. Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol, 404, 177-201.
  • DWEYR, R., BRUCKARD, W.J., REA, S.M., HOLMES, R.J., 2012. Bioflotaion and bioflocculation review, Microorganisms relevant from mineral beneficiation. Mineral processing and Extractive Metallurgy IMM Transcations section C, 21(2), 65-71.
  • ENANY, S., YOSHIDA, Y., TATEISHI, Y., OZEKI, Y., NISHIYAMA, A., SAVITSKAYA, A., YAMAGUCHI, T., OHARA, Y., YAMAMOTO, T., ATO, M., MATSUMOTO, S., 2017. Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions. Scientific reports, 7(1), 1-11.
  • FARGHALY, M.G., ABDEL-KHALEK, N.A., ABDEL-KHALE, M.A., SELIM, K.A., ABDULLAH, S.S., 2021. Physicochemical study and application for pyrolusite separation from high manganese-iron ore in the presence of microorganisms. Physicochemical Problems of Mineral Processing, 57(1), 273-283.
  • FARROKHPAY, S., FILIPPOV, L., FORNASIERO, D., 2020. Flotation of Fine Particles: A Review. Mineral Processing and Extractive Metallurgy Review, 155, 1-11.
  • GERBINO, E., CARASI, P., MOBILI, P., SERRADELL, M.A., GÓMEZ-ZAVAGLIA, A., 2015. Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology, 12, 1877-1887.
  • HAMADI, F., LATRACHE, H., ZAHIR, H., ELGHMARI, A., TIMINOUNI, M., ELLOUALI, M., 2008. The relation between Escherichia coli surface functional groups' composition and their physicochemical properties. Brazilian Journal of Microbiology, 39(1), 10-15 .
  • HELLAL, F., EL-SAYED, S., ZEWAINY, R., AMER, A., 2019. Importance of phosphate rock application for sustaining agricultural production in Egypt. Bulletin of the National Research Centre, 43(1), 1-11.
  • JIANG, W., SAXENA, A., SONG, B., WARD, B.B., BEVERIDGE, T.J., MYNENI, S.C.B., 2004. Elucidation of Functional groups on gram positive and gram negative bacterial surfaces using infrared spectroscopy. Langmuir, 20(26), 11433-11442.
  • JIANG, H.R., CHAN, D.C., 2016. Superhydrophobicity on nanostructured porous hydrophilic material. Appl. Phys. Lett. , 108(17), 171603.
  • KIMKES, T.E., HEINEMANN, M., 2020. How bacteria recognise and respond to surface contact. FEMS microbiology reviews, 44(1), 106-122.
  • KINNUNEN, P, MIETTINEN, H., BOMBERG, M., 2020. Review of Potential Microbial Effects on Flotation. Minerals, 10(6), 533.
  • LEE, P.Y., SARAYGORD-AFSHARI, N., LOW, T.Y., 2020. The evolution of two-dimensional gel electrophoresis-from proteomics to emerging alternative applications. Journal of Chromatography A, 1615, 460763.
  • LI, Q., DONG , F., DAI, Q., ZHANG, C., YU, L., 2018. Surface properties of PM2.5 calcite fine particulate matter in the presence of same size bacterial cells and exocellular polymeric substances of Bacillus mucitaginosus. Environ. Sci. Pollut. Res. Int., 25(23), 22429-22436.
  • LIMOLI, D.H., JONES, C.J., WOZNIAK, D.J., 2015. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbial Biofilms, 3(3), 223-247.
  • LYU ,Z., SHANG, Y., WANG, X., WU, Y., ZHENG, J., LIU, H., GONG, T., YE, L., DI, Q., 2020. Monoclonal Antibodies Specific to the Extracellular Domain of Histidine Kinase YycG of Staphylococcus epidermidis Inhibit Biofilm Formation. Frontiers in Microbiology, 11, 1839.
  • MADIGAN, M.T., MARTINKO, J.M., BROCK, T.D., 2006. Brock biology of microorganisms. Upper Saddle River, NJ: Pearson Prentice Hall. 11th Ed. ISBN:0130491470.
  • MAGDELDIN, S., ENANY, S., YOSHIDA, Y., XU, B., ZHANG, Y., ZUREENA, Z., LOKAMANI, I., YAOITA, E., YAMAMOTO, T., 2014. Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clinical proteomics, 11(1), 16.
  • MAGDELDIN, S., YAMAMOTO, T., TOOYAMA, I., ABDELALIM, E.M., 2014. New proteomic insights on the role of NPR-A in regulating self-renewal of embryonic stem cells. Stem Cell Reviews and Reports, 10(4), 561-72.
  • MICHELOT, A., SARDA, S., AUDIN, C., DEYDIER, E., MANOURY, E., POLI, R., REY, C., 2015. Spectroscopic characterization of hydroxylapatite and nanocrystalline apatite with grafted amino-propyl-triethoxysilane: nature of silane-surface interaction. Journal of Materials Science, 50(17), 5746- 5757.
  • MOKHTAR, A., ABDELKRIM, S., HACHEMAOUI, M., ADJDIR, M., ZAHRAOUI, M., BOUKOUSSA, B., 2020. Layered silicate magadiite and its composites for pollutants removal and antimicrobial properties: A review. Applied Clay Science,198, 105823.
  • NIMMAGADDA, A., LIU, X., TENG, P., SU, M., LI, Y., QIAO, Q., KHADKA, N.K., SUN, X., PAN, J., XU, H., LI, Q., CAI, J., 2017. Polycarbonates with Potent and Selective Antimicrobial Activity toward G-Positive Bacteria. Biomacromolecules, 18 (1), 87-95.
  • PATRA, P., NATARAJAN, K.A., 2008. Role of mineral specific bacterial proteins in selective flocculation and flotation. International Journal of Mineral Processing, 88(1-2), 53-58.
  • PATTANAIK, A., VENUGOPAL, R., 2019. Role of Surfactants in Mineral Processing: An Overview. In Surfactants and Detergents, DUTTA, A.K., IntechOpen, 1-17.
  • PEREIRA, A.R.M., HACHA, R.R., TOREM, M.L., MERMA, A.G., SILVAS, F.P., ABHILASH, A., 2021. Direct hematite flotation from an iron ore tailing using an innovative biosurfactant. Separation Science and Technology, In press, 1-11.
  • RAMÍREZ-ALDABA, H. , VAZQUEZ-ARENAS, J. , SOSA-RODRÍGUEZ, F.S., VALDEZ-PÉREZ, D., RUIZ-BACA, E, , GARCÍA-MEZA, J.V., TREJO-CÓRDOVA, G., LARA, R.H., 2017. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans. Environ Sci Pollut Res Int., 24, 20082-20092.
  • RODRÍGUEZ, A., CASTREJÓN-GODÍNEZ, M.L., SALAZAR-BUSTAMANTE, E., GAMA-MARTÍNEZ, Y., SÁNCHEZ-SALINAS, E., MUSSALI-GALANTE, P., TOVAR-SÁNCHEZ, E., ORTIZ-HERNÁNDEZ, M.L., 2020. Omics Approaches to Pesticide Biodegradation. Curr Microbiol, 77(4), 545–563.
  • RUAN, Y., HE, D., CHI, R., 2019. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals , 9, 253.
  • SAADELDIN, I.M., SWELUM, A.A.A., ELSAFADI, M., MAHMOOD, A., OSAMA, A., SHIKSHAKY, H., ALFAYEZ, M., ALOWAIMER, A.N., MAGDELDIN, S., 2020. Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. Journal of advanced research, 22, 105-118.
  • SAMREEN, S., KAUSAR, S., 2019. Phosphorus Fertilizer: The original and commercial sources. In Phosphorus-Recovery and Recycling , ZHANG, T., IntechOpen, 1-14.
  • SARVAMANGALA, H., VINAY, B., GIRISHAL, S.T., 2017. Bio-benefication of Oxide Minerals from Bacillus subtilis Using FTIR and MALDI-TOF Techniques. J. of Envir. Prot., 8, 194-205.
  • SELIM, K.A., ROSTOM, M., 2018. Bioflocculation of (Iron oxide-Silica) system using Bacillus cereus bacteria isolated from Egyptian iron ore surface. Egyptian Journal of Petroleum, 27(2), 235-240.
  • SMITH, R.W., MIETTINEN, M., 2006. Microorganisms in flotation and flocculation: future technology or laboratory curiosity?. Minerals Engineering, 19(6-8), 548-553.
  • SUHR, M., LEDERER, F.L., GÜNTHER, T.J., RAFF, J., POLLMANN, K., 2016. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins. PLoS-ONE, 11(6), 1-18.
  • TENG, Q., FENG, Y., LI, H., 2018. Effects of silicate-bacteria pretreatment on desiliconization of magnesite by reverse flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 60-67, ISSN 0927-7757,
  • TSHIKANTWA, T.S., ULLAH, M.W., HE, F., YANG, G., 2018. Current trends and potential applications of microbial interactions for human welfare. Frontiers in Microbiology, 9(1156), 1-9.
  • VIJAYALAKSHMI, S.P., RAICHUR, A.M., 2003. The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 29(4), 265-275.
  • VOGEL, M., MATYS, S., LEHMANN, F., DROBOT, B., GÜNTHER, T., POLLMANN, K., RAFF, J., 2017. Use of specific metal binding of self-assembling S-layer proteins for metal bioremediation and recycling. Solid State Phenomena, 262, 389-393.
  • VU, B. , CHEN, M. , CRAWFORD, R.J., IVANOVA, E.P., 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535-2554.
  • YANG, Y., RAM, R., MCMASTER, S.A., POWNCEBY, M.I., CHEN, M., 2021. A comparative bio-oxidative leaching study of synthetic U-bearing minerals: Implications for mobility and retention. Journal of Hazardous Materials, 403, 123914.
  • YAP, H.J., YONG, S.N., CHEAH, W.Q., CHIENG, S., KUAN, S.H., 2020. Bioleaching of kaolin with Bacillus cereus: Effects of bacteria source and concentration on iron removal. Journal of Sustainability Science and Management, 15(4): 91-99.
  • YU, Z., TIAN, R., LIU, D., ZHANG, Y., LI, H., 2020. Aggregation kinetics of binary systems containing kaolinite and Pseudomonas putida induced by different 1: 1 electrolytes: specific ion effects. PeerJ Physical Chemistry, 2, e12.
  • ZAIDI, T.S., ZAIDI, T. , PIER, G.B., 2018. Antibodies to Conserved Surface Polysaccharides Protect Mice Against Bacterial Conjunctivitis. Invest Ophthalmol Vis Sci., 59(6), 2512-2519
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7612ad88-3c68-4483-8971-81a2cf3c876b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.