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OPTIMISATION OF HIGH-SPEED STEELS CHEMICAL COMPOSITION 
USING THE ARTIFICIAL INTELLIGENCE METHODS 

The main goal of the research carried out was developing the design methodology for the new high-speed steels 
with the required properties, including hardness and fracture toughness, as the main properties guaranteeing the 
high durability and quality of tools made from them. It was decided that hardness and fracture toughness KIc are 
the criteria used during the high-speed steels design. In case of hardness, the statistical and neural network 
models were developed making computation possible of the high-speed steel hardness based solely on the steel 
chemical composition and its heat treatment parameters, i.e., austenitizing- and tempering temperatures. In the 
second case - high-speed steels fracture toughness, the neural network model was developed, making it possible 
to compute the KIc factor based on the steel chemical composition and its heat treatment parameters. The 
developed material models were used for designing the chemical compositions if the new high-speed steel, 
demonstrating the desired properties, i.e., hardness and fracture toughness. Methodology was developed to this 
end, employing the evolutionary algorithms, multicriteria optimisation of the high-speed steels chemical 
composition. 

1. INTRODUCTION 

The quick knowledge progress pace in many manufacturing engineering 
branches challenges the tool manufacturers and designers more and more. It is 
evident that reliability, durability, quality, and other properties of tools, ensuring 
comfort of their use, depend mostly on the deliberate, well studied materials 
selection, using the multicriteria optimisation. Economic- and ecological issues get 
more and more important amid many criteria, apart from the design-, engineering-, 
and service requirements. Hardness and ductility are the decisive properties in case 
of materials used for cutting tools. The task of the suitable material selection by the 
tool designer features the endless compromise between selection of the material with 
high hardness, yet with small ductility, or vice versa - selection of the material with 
good ductility, yet with the relatively lower hardness. High-speed steels are the 
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materials with the best ductility and fracture toughness from all tool materials in use 
nowadays, which, as it seems, will remain irreplaceable in many applications for a long 
time. 

The continuous intensive development of the tool materials and tool industry, e.g., in 
countries like Italy, Austria, Germany, Sweden, France, or Slovenia, is connected with 
changes in the tool- and advanced tool materials market. This is connected with the peculiar 
character of the contemporary manufacturing, which is compelled by the cheap competition 
from the Eastern markets, compared to the situation from several-, or a dozen or so years 
ago. It is still expected, concerning the tool materials, to provide their best feasible service- 
and use properties, and especially the tools' durability (service time), which extorts the need 
to carry out investigations of the new materials. Regrettably, the classic approach requires 
huge financial expenditures and a lot of time, and is connected with the need to carry out the 
complex fundamental research upon the newly designed tool materials, their manufacturing 
technologies, technologies improving their properties, and the applied research, consisting in 
the complex technological tests, making assessment possible of the service properties  
of tools. The requirements posed by the multi-aspect engineering design of tools, and also 
many world literature sources suggest the need of the complex approach to the materials 
selection problem, along with the technological processes for the contemporary tools, 
characteristic of the high quality, reliability, and being environment friendly [ 1-3]. 

Progress in the area of materials engineering is connected inseparably with 
employment and development of mathematical modelling, numerical methods, 
computational intelligence methods, and artificial intelligence. Computer modelling and 
simulation make improvement of engineering materials properties possible, as well as 
prediction of their properties, even before the materials are fabricated, with the significant 
reduction of expenditures and time necessary for their investigation and application. 
Therefore, modelling becomes the indispensable tool in materials science and materials 
engineering ensuring the chemical and physical description of materials in a broad scale 
both of length and time. This is connected with the need to investigate behaviour  
of materials in various scales, from atomic, through the mezo- to macro scales, employing 
knowledge of physics and chemistry principles pertaining to the solid matter state and 
properties. In this way, the contemporary materials science, and especially materials design, 
whose essence is computer simulation for evaluation of materials properties in the virtual 
environment, makes adjustment possible of their chemical composition and structure to the 
set of properties required for the new materials and products, before fabrication of these 
materials [ 3-5]. 

One should differentiate two aspects of materials design. The first one, referring to 
selection of the material for the particular product from those developed and known to date 
[  6- 8], and the second one connected with development of new materials for applications 
undefined so far, or materials meeting the service requirements better [ 9-   11]. Just in this 
second aspect it is especially important that the new materials solutions are reached not with 
the trial and error method, but with the mathematical or physical modelling, and the 
optimum solution is obtained with computer assistance without the need to carry out the 
time consuming and costly experiments. Knowledge of phenomena - electrical, magnetic, 
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mechanical, thermal, structural or others, and their further skilful exploration taking into 
account the theory pertaining to their fundamentals, using the contemporary modelling 
methods (e.g., artificial intelligence), analytical techniques and advanced investigation 
methods explaining behaviour of materials, makes design of new materials possible, with 
properties which meet best their practical application requirements. 

2. MATERIAL FOR INVESTIGATIONS AND RESEARCH METHODOLOGY 

For the high-speed steels design, as a task which is the optimization one because of the 
computational method employed, it was assumed that the criterial properties are hardness 
and fracture toughness expressed by the fracture toughness KIc. Moreover, the heat treatment 
technological parameters are optimised also, i.e., austenitizing-, and tempering temperatures. 
Achieving the main goal required carrying out the following partial tasks, consisting in: 

• development of the high-speed steels hardness model making it possible to compute 
hardness based on the steel chemical composition and its heat treatment parameters 
(austenitizing and tempering temperatures), 

• development of the model making it possible to determine the high-speed steels 
fracture toughness, based on the steel chemical composition and its heat treatment 
parameters (austenitizing and tempering temperatures). 
Moreover, the supplementary research was done of the structure and mechanical 

properties of the selected high-speed steel grades to complement the set of the relevant data 
collected so far, necessary for the experimental verification of the developed material 
models. Investigations of the mechanical properties included hardness tests of steel in the 
hardened state and after tempering and measurements of the fracture toughness KIc. 

The following data feature the base for development of models making it possible to 
compute the high-speed steels properties based on their chemical composition and 
austenitizing- and tempering temperatures only: 

• investigation results of the newly developed high-speed steels  [ 12],[13], 
• data contained in the relevant standard [14], 
• data from the high-speed steels manufacturers' catalogues [ 15], 
• results of the own supplementary investigations of the selected high-speed steels 

grades. 
 Alloy elements' concentrations for the newly developed steels, collected from 

standards, and from catalogues of steel manufacturers are presented in Tables 1-3 
respectively. The austenitizing temperature range for which the data was processed is 
1120°C-1280°C, and the tempering temperature range is 480°C-630°C. 

For development of models making it possible to compute the high-speed steels 
hardness based solely on their chemical composition, as well as on their austenitizing- and 
tempering temperatures, the multiple regression statistical method and the artificial neural 
networks were used. In case of the steel fracture toughness model the artificial neural 
networks were used. 
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The supplementary investigations carried out for verification of the developed models 
were made for the selected high-speed steels grades with chemical compositions shown in 
Table 4.  Their heat treatment parameters which were determined individually for each steel 
grade are shown in Tables 5-7. 

Table 1. Chemical composition of the newly developed high-speed steels used for development 
 of the hardness models [12], [13]. 

Steel type Average mass concentration of the alloying element, % 
 C Cr W Mo V Co 

9-2-2+Si 0.94 4.5 9.0 1.72 1.8 0.0 
9-2-2+Si+Ti 0.93 4.5 9.0 1.88 1.7 0.0 
9-2-2+Si+Ti (1) 0.93 4.7 8.9 2.0 1.5 0.0 
9-2-2+Si+Nb 0.94 4.5 9.0 1.85 1.67 0.0 
9-2-2+Si+Nb (1) 0.92 4.5 9.1 1.87 1.3 0.0 
9-2-2-5 0.94 4.4 8.8 2.4 1.6 5.2 
11-0-2+Si 0.93 4.5 11.2 0.0 1.8 0.0 
11-0-2+Si+Ti 0.98 4.6 10.8 0.0 1.6 0.0 
11-0-2+Si+Ti (1) 0.93 4.4 10.6 0.0 1.4 0.0 
11-0-2+Si+Nb 0.94 4.5 11.4 0.0 1.6 0.0 
11-0-2+Si+Nb (1) 0.93 4.5 11.5 0.0 1.3 0.0 
11-0-2-5 0.91 4.5 10.9 0.0 1.8 5.2 
11-2-2+Si 1.1 4.4 11.3 1.88 1.8 0.0 
11-2-2+Si+Ti 1.05 4.5 11.2 1.9 1.7 0.0 
11-2-2+Si+Ti (1) 1.04 4.2 11.1 1.8 1.5 0.0 
11-2-2+Si+Nb 1.0 4.4 11.2 1.95 1.7 0.0 
11-2-2+Si+Nb (1) 1.02 4.5 11.3 1.82 1.4 0.0 
11-2-2-5 1.03 4.5 11.3 1.94 1.8 4.9 

Table 2. Chemical compositions of high-speed steels specified in standard [14] used for development 
 of the hardness models 

Steel grade Average mass concentration of the alloying element, % 
 C Cr W Mo V Co 

HS18-0-1 0.78 4.15 17.95 0 1.1 0.0 
HS0-4-1 0.81 4.15 4.25 1.1 1 0.0 
HS1-8-1 0.82 4.15 8.5 2.85 1.2 0.0 
HS6-5-2 0.84 4.15 4.95 6.3 1.9 0.0 
HS1-4-2 0.9 3.95 4.45 1.8 1.95 0.0 
HS6-5-2C 0.9 4.15 4.95 6.3 1.9 0.0 
HS6-5-2-5 0.91 4.15 4.95 6.3 1.9 4.75 
HS3-3-2 0.99 4.15 2.7 6.3 2.35 0.0 
HS2-9-2 1.0 4.15 8.7 1.7 1.95 0.0 
HS6-6-2 1.05 4.15 6 6.3 2.45 0.0 
HS2-9-1-8 1.1 4.15 9.5 1.55 1.1 8.0 
HS6-5-3 1.2 4.15 4.95 6.3 2.95 0.0 
HS10-4-3-10 1.28 4.15 3.55 9.5 3.25 10 
HS6-5-3-8 1.28 4.15 5.0 6.3 2.95 8.4 
HS6-5-3C 1.29 4.15 4.95 6.3 2.95 0.0 
HS6-5-4 1.33 4.15 4.6 5.6 3.95 0.0 
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Table 3. Chemical compositions of high-speed steels specified in [15] used for development 
 of the secondary hardness models 

Steel type Average mass concentration of the alloying element, % 

 C Cr W Mo V Co 

1-5-1-8 0.72 4.0 5.0 1.0 1.0 8.0 

18-0-1 0.75 4.1 18 0 1.1 0 

2-9-1 0.83 3.8 8.5 1.8 1.2 0 

0-4-1 0.84 4.0 4.2 0 1.1 0 

1-5-2 0.89 4.0 4.5 1.2 1.9 0 

6-5-2 0.9 4.2 5.0 6.4 1.8 0 

2-5-1-2 0.91 3.7 5.0 1.8 1.2 2.5 

6-5-2-5 0.93 4.2 5.0 6.4 1.8 4.8 

3-3-2 0.99 4.1 2.7 2.8 2.4 0 

2-9-2 1.02 3.8 8.6 1.8 1.9 0 

5-6-2-8 1.05 4.0 6.0 5.0 1.6 7.8 

6-6-2 1.05 4.0 6.3 6.3 2.5 0 

2-9-1-8 1.08 3.8 9.4 1.5 1.2 8.0 

4-8-3 1.2 4.2 8.5 3.5 3.0 0 

6-5-3 1.2 4.1 5.0 6.3 3.0 0 

10-4-3-10 1.27 4.0 3.6 9.5 3.2 10.0 

12-1-4 1.28 4.2 0.8 12 3.8 0 

6-5-4 1.3 4.2 4.5 5.6 4.0 0 

9-4-3-11 1.41 4.2 3.6 8.8 3.4 11.0 

 
 

Table 4. Chemical compositions of high-speed steels used in supplementary investigations 

Mass concentration of the alloying element, % Steel grade 

C Cr W Mo V Co 

HS 6-5-2 0.9 4.19 6.13 4.84 1.99 0.02 

HS 18-0-1 0.85 4.08 17.57 0.56 1.3 0.07 

HS 10-4-3-10 1.26 4.28 9.04 3.31 3.54 9.92 

 

Table 5. Austenitizing- and tempering temperatures used for HS6-5-2 steel 

Austenitizing temperture, °C Tempering temperature, °C 

1150 

1180 

1225 

500 550 580 

Soft annealing temperature 860°C 
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Table 6. Austenitizing- and tempering temperatures used for HS18-0-1 steel 

Austenitizing temperture, °C Tempering temperature, °C 

1180 

1220 

1255 

1280 

520 550 580 

Soft annealing temperature 860°C 

Table 7. Austenitizing- and tempering temperatures used for HS10-4-3-10 steel 

Austenitizing temperture, °C Tempering temperature, °C 

1180 540 560 580 

1200 540 560 580 

1225 540 560 580 

1240 540 560 580 

Soft annealing temperature 880°C 

Hardness tests with Rockwell method in scale C were carried out on the automatic 
ZWICK ZHR hardness tester. Each time 15 readings were made and their arithmetic average 
was assumed as the test result. Investigation of the KIc factor was carried out according to 
standard [16] using the three-point bending method. 

3. MODELLING OF THE HIGH-SPEED STEELS PROPERTIES 

For development of hardness models results were used of investigations carried out on 
the newly developed high-speed steels, relevant standards, and manufacturers' catalogues.  
The austenitizing temperature range for which the experimental data was processed is 
1120°C-1280°C, and the tempering temperature range is 480°C-630°C. 

Results of the supplementary investigations were not used for development of models 
and were used only for the final experimental verification of the developed models. 

As tools for development of models making computation of the high-speed steels 
hardness possible based solely on their chemical composition, as well as on their 
austenitizing- and tempering temperatures the following were used: 

• statistical method of multiple regression, 
• artificial neural networks. 

The main assumption made first was that steel hardness depends on concentrations  
of the main alloy elements occurring in these steels: carbon, chromium, tungsten, 
molybdenum, vanadium, and cobalt, as well as on their austenitizing- and tempering 
temperatures. 

In the multiple regression method the general form of the equation - model was used: 



Wojciech SITEK 

 
126 

 ( )∑
k

=i
ii Xfa=HRC

1

  (1) 

where: ai – coefficients of the regression equation,  HRC - steel hardness, fi - functions  
of the equation variables,  X - vector of the equation variables, (X = [% C, % Cr, ..., Ta, 
Tt]). 

In the second high-speed steels hardness calculation method the artificial neural 
networks were used of the multilayer perceptron type, employing various learning methods. 
Use of a constant number of input neurons was decided (8) as a consequence of the main 
assumption that hardness depends on C, Cr, W, V, Co, and Co, as well as on the 
austenitizing- and tempering temperatures. The analysed networks had 1 output 
corresponding to the steel hardness. The numbers of hidden layers and neurons were 
modified in the investigations. 

The adequacy of the developed models was checked by analysing the error between the 
calculated hardness and its corresponding hardness tested experimentally. The average error 
for the tested data file was assumed as the criterion: 

 

( )
N

HRCHRC
=R

N

=i
mici∑ −

1   (2) 

where: N – test file size, HRCci – calculated hardness (i–th), HRCmi – measured hardness  
(i–th). 

The assumption was made that the model that would make it possible to obtain the 
calculation error ca. 1 HRC will be a valid one. 

3.1. STATISTICAL MODEL OF HARDNESS 

Based on the prepared experimental data set several mathematical models were 
analysed for computation of steel hardness based on the alloy elements concentrations and 
heat treatment of the high-speed steels. 

Results of these mathematical models analysis indicate that hardness calculations for 
the various forms of the mathematical equation tend to the computation error value of 0.7 
HRC. Therefore, model (3) demonstrating the computation error of 0.71 was assumed to be 
the best one and used in the next analyses. 

 

)/(46.23)(23.5886.437.063.1
4.2117.081.011.006.013.01.5

22 ToTaToTaToTaTo
TaCoVMoWCrCHRC

⋅−+⋅−⋅+⋅−
⋅−⋅+⋅−⋅+⋅−⋅−⋅=

 (3) 

It should be noted that in case of the austenitizing- and tempering temperatures their 
readings were divided by 100. Therefore, using the developed mathematical models, the real 
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temperature should be presented in this way as a variable in the model. So, e.g., if the real 
austenitizing temperature is 1200°C, then its value after normalising should be entered to the 
model, i.e., 12. 

3.2. NEURAL NETWORK MODEL OF HARDNESS 

Next, the artificial neural networks were used for the secondary hardness modelling.  
Results of the experimental research, containing information about the chemical 
compositions and the steel hardness test results, shown in Tables 1-3, feature the base for the 
neural networks design. A set of 2714 reference standards was available, which may be 
considered as the sufficient number to develop the fully adequate neural networks model. 

It was assumed, referring to the developed neural networks structure, that the network 
has 8 inputs, corresponding to concentration values of the six main alloy elements occurring 
in this steel group and to the austenitizing- and tempering temperatures, and one output, 
corresponding to hardness.  The StatSoft STATISTICA Neural Networks v. 4.0 program 
was used for development, training, and testing of the neural networks. 

Several hundred neural networks were generated using the Statistica Neural Network 
program with the various numbers of neurons in the hidden layers. Some of them were 
eliminated at the initial design stage due to the excessive error or the excessive number  
of neurons in the hidden layers. Training error graph for every network was studied after 
completing the training process or in its course. Based on that the networks were checked if 
the overtraining did not take place and the overtrained ones were eliminated from the 
subsequent analysis. The average absolute error, quotient of standard deviations, and 
correlation coefficient were assumed as the network quality coefficients. Finally one 
network was selected, from the entire set of the developed networks -the multilayer 
perceptron with the 8-7-1 structure (i.e., 8 inputs, 7 neurons in the hidden layer, and 1 
output), with the average calculation error of 0.59 HRC. Quality coefficients of the 
developed network are shown in Table 8. The developed models were subjected to 
additional verification based on the supplementary investigation results. Hardness 
calculations were made using the developed models for steels with chemical 
compositions presented in Table 4. The calculation errors were estimated next  

Table 8.Quality coefficients of the neural network developed for the steel hardness calculation 

Data set Network structure Training method/number of 
training epochs Training Validating Testing 

Average absolute error, HRC 

0.53 0.57 0.59 

Quotient of standard deviations 

0.23 0.25 0.27 

Correlation coefficient 

MLP 8-7-1 
BP/50 

CG/462 

0.97 0.97 0.96 

BP – error back-propagation learning method, CG – conjugate gradients learning method 
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Fig. 1. Comparison of experimental results and hardness calculations for 9-2-2+Si steel (left) and 2-9-1-8 steel (right) 

according to Eq. 2, which for the statistical model and neural network are 0.99 HRC 
and 1.01 HRC respectively. Therefore, one can state that the developed models meet 
fully the calculation accuracy assumptions. In Fig. 1 comparison of the calculated and 
experimental tempering curves are shown for selected steels, from all included in the 
data set used to develop the models. 

3.3. HIGH-SPEED STEELS FRACTURE TOUGHNESS MODEL 

The further works were focused on development the model making it possible to 
determine the high-speed steel fracture toughness solely based on the steel chemical 
composition and heat treatment parameters. The artificial neural networks were used as a 
modelling tool. It was assumed, referring to the developed neural networks structure, as in 
case of hardness modelling, that the network has 8 inputs, corresponding to concentration 
values of the six main alloy elements occurring in this steel group and to the austenitizing- 
and tempering temperatures, and one output, corresponding to the value of the fracture 
toughness KIc. 

The StatSoft STATISTICA Neural Networks v. 4.0 program was used for 
development, training, and testing of the neural networks. After entering the training data to 
the program, the neural network design process was started.  

Several dozen neural networks were generated using the program, with the various 
numbers of neurons in the hidden layer. About half of them were eliminated immediately 
due to the excessive error or the excessive number of neurons in the hidden layers. Training 
error graph for every network was studied after completing the training process or in its 
course. Based on that the networks were checked if the overtraining did not take place and 
the overtrained ones were eliminated from the subsequent analysis. The average absolute 
error, quotient of standard deviations, and correlation coefficient were assumed as the 
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network quality coefficients. Finally one network was selected, from the entire set of the 
developed networks -the multilayer perceptron with the 8-6-1 structure (i.e., 8 inputs, 6 
neurons in the hidden layer, and 1 output), with the average calculation error of 0.39 
MPa·m1/2. Quality coefficients of the developed network are shown in Table 9. Comparison 
of the calculated KIc coefficient values with the experimental data is shown in Fig. 2. 

Table 9. Quality coefficients of the neural network developed for the fracture toughness KIc calculation 

Data set 
Network structure 

Training method/ 
number of training epochs learning validating 

Average absolute error, MPa⋅m1/2 
0.39 0.39 

Quotient of standard deviations 
0.15 0.22 

Correlation coefficient 

MLP 8-6-1 
BP/50 

CG/56 

0.99 0.98 
BP – error back-propagation learning method, CG – conjugate gradients learning method 
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Fig. 2. Comparison of the calculated KIc coefficient with the experimental data for HS6-5-2 steel (left) and 10-4-3-10 (right) 

 4. OPTIMISATION OF CHEMICAL COMPOSITION OF HIGH-SPEED STEELS 

For the high-speed steels chemical compositions design, which is the optimisation 
problem, the evolutionary algorithms were used.  The object function is the index defining the 
set of the optimised properties, in this case hardness and fracture toughness. It was assumed 
that it will be possible to determine weights for each property, which will make it possible to 
make a decision which of the properties in the optimisation procedure actually carried out is 
the most important one. The optimisation result, with the maximum secondary hardness as the 
goal, are the chemical compositions high-speed steels with the highest hardness, and with the 
fracture toughness as a goal, the chemical compositions of steels demonstrating the highest 
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fracture toughness KIc. Moreover, the possibility was assumed to limit the search area for the 
optimum chemical composition meeting the assumed criteria. Because of the form of the 
developed material models employed for design of the chemical composition, not only the 
alloy elements concentrations are optimised, but also the heat treatment parameters, i.e., the 
austenitizing- and tempering temperatures.  

The assumptions made were used in optimisation, pertaining to relationships among 
the particular concentrations of the alloy elements occurring in the high-speed steel and its 
hardening- and tempering temperatures - and its properties. The own computer program was 
developed to carry out the high-speed steel chemical composition optimisation task, with the 
maximum hardness and fracture toughness as the goal, in which the genetic algorithm was 
employed with the hardness- and fracture toughness functions as the neural network models. 

The object function was optimised expressing the high-speed steel hardness and its 
fracture toughness in the following form: 

 )()( xKbxHRCaZ IC⋅+⋅=  (4) 

where: HRC(x) - hardness function (neural network model), KIc(x) – fracture toughness 
function (neural network model), xi, - vector of parameters (mass concentrations of alloying 
elements, austenitizing- and tempering temperatures), a, b – weight coefficients for both  
of the object function components, assuming values from the <0;1> range. 

The chemical composition optimisation procedure calls for specifying the limits the 
optimised function parameters, i.e., alloy elements concentrations ranges and the 
austenitizing- and tempering temperatures. Based on analysis of concentrations of chemical 
compositions of steels shown in Tables 1-3, optimisation limits used in the genetic algorithm 
are presented in Table 8; whereas, the additional limitations are listed in Table 9.  
The roulette method was used in this algorithm for selection.  

Parameters of the algorithm defined by the user in the developed program are: 
• Number of generations - determines the number of algorithm repetitions. 
• Population size - number of individuals.  
• Crossing coefficient - value from the range from 0 to 1 (0  denotes the probability  

of crossing equal to 0, 1 denotes the probability of 0.2), specifying probability of the 
selection of the relevant pair of specimens to transform the population (default value 
of 1). 

• Mutation coefficient - value from the range from 0 to 1 (0  denotes the probability  
of mutation equal to 0, and 1 denotes the probability of 0.2), specifying probability  
of the selection of the particular specimen for mutation operation (default value  
of 0.5). 

• Accuracy of calculations - specifies precision of the environment search. 
• Weights a and b - specifying weights attributed to each object function component. 

The optimisation algorithm functioning consists in such selection of the alloying 
elements and hardening- and tempering temperatures so that the chemical composition of the 
steel is obtained with the possibly highest hardness and fracture toughness, while 
maintaining proportions for these properties specified by their weights (Eq. 4). The 
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developed own computer program makes investigations possible pertaining to designing the 
chemical composition of steel with the required hardness and fracture toughness. Arbitrary 
defining is possible, within the optimisation limits, of the search space of the optimum 
chemical composition of the high-speed steel. Moreover, provision is made in the program 
for adjustment of the optimisation parameters, which can also affect the calculations results, 
i.e., the arbitrary selection of the set of parameters connected with managing the population. 
One should clearly stress that computations yield different results each time which results 
from drawing the initial population. As an illustration of research carried out using the 
developed program two selected examples are presented of the chemical composition 
optimisation results, obtained for various genetic algorithm parameters and for various limits 
imposed on the search space of the optimum chemical composition. 

 
 

Table 10. Boundary of the optimisation procedure 

Parameter C Cr W Mo V Co Ta Tt 

MIN 0.72 3.7 0 0 1 0 1150 500 

MAX 1.41 4.7 18 9.5 4.5 11 1280 630 

 
Table 11. Optimisation procedure constrains used in calculation 

Constrain Cr+W+Mo+V+Co (Cr+W+Mo+V+Co)/C Mo+V+Co W+Mo+V 

MIN 9.3 11.1 1.1 5.3 

MAX 31 30.9 18.7 19.2 

 
Example 1 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 

Number of individuals 50 HRC Weight 1 

Crossing coefficient 1 KIc Weight 1 

Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta ,°C Tt,,°C 

Minimum value 0.72 3.7 2 2 1 0 1150 500 

Maximum value 1.41 4.7 18 9.5 4.5 11 1280 630 

 
Calculation results 

Solu-
tion 

% C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpop HRC KIc 

1 1.22 4.67 10.53 2.12 1.98 1.12 1253 512 84.3 81.5 66.4 17.9 
2 1.16 4.65 2.13 4.24 1.06 10.01 1254 589 86.9 80.3 68.5 18.5 
3 0.99 4.59 3.51 2.24 1.00 7.72 1264 533 87.5 82.7 68.8 18.6 
4 1.18 4.61 2.13 3.35 1.37 3.62 1253 585 86.0 78.2 67.0 19.0 
5 1.34 4.68 9.03 3.62 1.00 0.69 1267 501 85.3 79.5 67.1 18.1 
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Example 2 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 

Number of individuals 50 HRC Weight 0.95 

Crossing coefficient 1 KIc Weight 1 

Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta ,°C Tt,,°C 

Minimum value 0.72 3.7 2 2 1 0 1190 520 

Maximum value 1.41 4.7 18 9.5 4.5 11 1240 590 

 
Calculation results 

Solu-
tion 

% C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpop HRC KIc 

1 0.86 4.20 3.00 2.71 1.17 10.53 1215 572 82.1 74.3 67.1 18.3 
2 0.98 4.40 5.51 2.44 1.12 6.51 1212 520 80.9 74.3 67.2 17.0 
3 1.09 4.68 3.95 2.00 2.25 0.04 1205 584 84.7 83.2 64.0 23.9 
4 0.83 4.45 4.01 3.35 1.62 1.81 1226 578 81.4 80.3 64.4 20.2 
5 1.16 4.61 5.77 2.35 2.22 0.00 1235 577 80.8 75.7 65.9 18.2 

5. SUMMARY 

The main goal of the research carried out was developing the design methodology for 
the new high-speed steels with the required properties, including hardness and fracture 
toughness, as the main properties guaranteeing the high durability and quality of tools made 
from them. It was decided that hardness and fracture toughness KIc are the criteria used 
during the high-speed steels design. To this end the relevant models were developed - for 
hardness and for fracture toughness expressed with the KIc coefficient. The developed 
material models were used for designing the chemical compositions if the new high-speed 
steel, demonstrating the desired properties, i.e., hardness and fracture toughness. 
Methodology was developed to this end, employing the evolutionary algorithms, 
multicriteria optimisation of the high-speed steels chemical composition. The developed 
own computer program makes investigations possible pertaining to designing the chemical 
composition of steel with the required hardness and fracture toughness. Arbitrary defining is 
possible, within the optimisation limits, of the search space of the optimum chemical 
composition of the high-speed steel. Solutions presented in the work, based on using the 
adequate material models may feature an interesting alternative in designing of the new 
materials with the required properties. The practical aspect has to be noted, resulting form 
the developed models, which may successfully replace the above mentioned technological 
investigations, consisting in one time selection of the chemical composition and heat 
treatment parameters  and experimental verification of the newly developed materials to 
check of its properties meet the requirements. 
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The presented approach to new materials design, being the new materials design 
philosophy, assumes the maximum possible limitation of carrying out the indispensable 
experiments, to take advantage of the existing experimental knowledge resources in the form 
of databases and most effective computer science tools, including neural networks and 
evolutionary algorithms. It should be indicated that the materials science knowledge, 
pertaining oftentimes to the multi-aspect classic problems and described, or - rather - saved 
in the existing, broadly speaking, databases, features the invaluable source of information 
which may be used for discovery of the unknown so far relationships describing  the 
material structure - properties relations. The main task is integration of the materials science 
knowledge and computer science tools to find the new, undiscovered yet relationships and 
development of materials models based on the knowledge, which was acquired in 
experimental research over many years. Using the adequate material models makes carrying 
computer simulations out, which let forecasting possible of materials properties in various 
configurations of, say, chemical composition, processing stage (e.g., heat treatment) or 
product type. 
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