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OPTIMISATION OF HIGH-SPEED STEELSCHEMICAL COMPOSITION
USING THE ARTIFICIAL INTELLIGENCE METHODS

The main goal of the research carried out was deugd the design methodology for the new high-spstedls
with the required properties, including hardnesd fiacture toughness, as the main properties gtesimg the
high durability and quality of tools made from theltnwas decided that hardness and fracture towgghig are
the criteria used during the high-speed steelsgdedn case of hardness, the statistical and nenetatork
models were developed making computation possibtheohigh-speed steel hardness based solely ostd¢let
chemical composition and its heat treatment paramset.e., austenitizing- and tempering temperatuire the
second case - high-speed steels fracture toughthesseural network model was developed, makimpésible

to compute the K factor based on the steel chemical composition itdheat treatment parameters. The
developed material models were used for desigriregchemical compositions if the new high-speedl,stee
demonstrating the desired properties, i.e., hasdaed fracture toughness. Methodology was develtpdhis
end, employing the evolutionary algorithms, muiténia optimisation of the high-speed steels chainic
composition.

1. INTRODUCTION

The quick knowledge progress pace in many manufactuengineering
branches challenges the tool manufacturers andyrrsi more and more. It is
evident that reliability, durability, quality, another properties of tools, ensuring
comfort of their use, depend mostly on the deliteeravell studied materials
selection, using the multicriteria optimisation.oBomic- and ecological issues get
more and more important amid many criteria, apannfthe design-, engineering-,
and service requirements. Hardness and ductilgytla® decisive properties in case
of materials used for cutting tools. The task & Huitable material selection by the
tool designer features the endless compromise leetselection of the material with
high hardness, yet with small ductility, or vicerse - selection of the material with
good ductility, yet with the relatively lower harelks. High-speed steels are the
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materials with the best ductility and fracture tbogss from all tool materials in use
nowadays, which, as it seems, will remain irrepddde in many applications for a long
time.

The continuous intensive development of the todlemas and tool industry, e.g., in
countries like Italy, Austria, Germany, Sweden, rfeé&g or Slovenia, is connected with
changes in the tool- and advanced tool materialkenarhis is connected with the peculiar
character of the contemporary manufacturing, wisctompelled by the cheap competition
from the Eastern markets, compared to the situdtmm several-, or a dozen or so years
ago. It is still expected, concerning the tool mats, to provide their best feasible service-
and use properties, and especially the tools' diuyafservice time), which extorts the need
to carry out investigations of the new materialegfttably, the classic approach requires
huge financial expenditures and a lot of time, sntbnnected with the need to carry out the
complex fundamental research upon the newly dedigma materials, their manufacturing
technologies, technologies improving their progsitand the applied research, consisting in
the complex technological tests, making assessmpessible of the service properties
of tools. The requirements posed by the multi-aispagineering design of tools, and also
many world literature sources suggest the neehefcomplex approach to the materials
selection problem, along with the technological gesses for the contemporary tools,
characteristic of the high quality, reliability,abeing environment friendyif3].

Progress in the area of materials engineering isnecded inseparably with
employment and development of mathematical modgllimumerical methods,
computational intelligence methods, and artifiaiatelligence. Computer modelling and
simulation make improvement of engineering matsripfoperties possible, as well as
prediction of their properties, even before theamnats are fabricated, with the significant
reduction of expenditures and time necessary feir tinvestigation and application.
Therefore, modelling becomes the indispensable itoahaterials science and materials
engineering ensuring the chemical and physical rqegsmn of materials in a broad scale
both of length and time. This is connected with theed to investigate behaviour
of materials in various scales, from atomic, thiotige mezo- to macro scales, employing
knowledge of physics and chemistry principles pentg to the solid matter state and
properties. In this way, the contemporary matesalence, and especially materials design,
whose essence is computer simulation for evaluaifomaterials properties in the virtual
environment, makes adjustment possible of theimite& composition and structure to the
set of properties required for the new materiald products, before fabrication of these
materials B-5].

One should differentiate two aspects of materiasigh. The first one, referring to
selection of the material for the particular pradinom those developed and known to date
[6-8], and the second one connected with developmenew materials for applications
undefined so far, or materials meeting the servemplirements bette©9f11]. Just in this
second aspect it is especially important that #we materials solutions are reached not with
the trial and error method, but with the mathenadtior physical modelling, and the
optimum solution is obtained with computer assistawithout the need to carry out the
time consuming and costly experimentiowledge of phenomena - electricatagnetic,
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mechanical, thermal, structural or others, andrtheiher skilful exploration taking into
account the theory pertaining to their fundamentalking the contemporary modelling
methods (e.g., artificial intelligence), analyticechniques and advanced investigation
methods explaining behaviour of materials, makesgieof new materials possible, with
properties which meet best their practical applicatequirements.

2. MATERIAL FOR INVESTIGATIONS AND RESEARCH METHODDOGY

For the high-speed steels design, as a task whittteioptimization one because of the
computational method employed, it was assumedth®acriterial properties are hardness
and fracture toughness expressed by the fractughtess I§. Moreover, the heat treatment
technological parameters are optimised also,dlestenitizing-, and tempering temperatures.
Achieving the main goal required carrying out tbkowing partial tasks, consisting in:

» development of the high-speed steels hardness nmoaldhg it possible to compute
hardness based on the steel chemical compositidntarheat treatment parameters
(austenitizing and tempering temperatures),

« development of the model making it possible to wetee the high-speed steels
fracture toughness, based on the steel chemicapasition and its heat treatment
parameters (austenitizing and tempering tempergture
Moreover, the supplementary research was done efsthucture and mechanical

properties of the selected high-speed steel griadesmplement the set of the relevant data
collected so far, necessary for the experimentaifisation of the developed material
models. Investigations of the mechanical propertietuded hardness tests of steel in the
hardened state and after tempering and measureofahts fracture toughness.K

The following data feature the base for developnmnnodels making it possible to
compute the high-speed steels properties basedheim themical composition and
austenitizing- and tempering temperatures only:

* investigation results of the newly developed higbesl steels 1P],[13],

« data contained in the relevant standard [14],

« data from the high-speed steels manufacturerdogatas [L5],

* results of the own supplementary investigationsthed selected high-speed steels
grades.

Alloy elements' concentrations for the newly depeld steels, collected from
standards, and from catalogues of steel manufastuaee presented in Tables 1-3
respectively. The austenitizing temperature range which the data was processed is
1120°C-1280°C, and the tempering temperature rang@0°C-630°C.

For development of models making it possible to potm the high-speed steels
hardness based solely on their chemical composisisrwell as on their austenitizing- and
tempering temperatures, the multiple regressiotisital method and the artificial neural
networks were used. In case of the steel fractoughness model the artificial neural
networks were used.
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The supplementary investigations carried out faifieation of the developed models
were made for the selected high-speed steels gmitlechemical compositions shown in
Table 4. Their heat treatment parameters whicle wletermined individually for each steel
grade are shown in Tables 5-7.

Table 1. Chemical composition of the newly devetbpigh-speed steels used for development
of the hardness models [12], [13].

Steel type Average mass concentration of the altpglement, %
C Cr W Mo \ Co
9-2-2+Si 0.94 4.5 9.0 1.72 1.8 0.0
9-2-2+Si+Ti 0.93 4.5 9.0 1.88 1.7 0.0
9-2-2+Si+Ti (1) 0.93 4.7 8.9 2.0 15 0.0
9-2-2+Si+Nb 0.94 4.5 9.0 1.85 1.67 0.0
9-2-2+Si+Nb (1) 0.92 4.5 9.1 1.87 1.3 0.0
9-2-2-5 0.94 4.4 8.8 2.4 1.6 5.2
11-0-2+Si 0.93 4.5 11.2 0.0 1.8 0.0
11-0-2+Si+Ti 0.98 4.6 10.8 0.0 1.6 0.0
11-0-2+Si+Ti (1) 0.93 4.4 10.6 0.0 1.4 0.0
11-0-2+Si+Nb 0.94 4.5 11.4 0.0 1.6 0.0
11-0-2+Si+Nb (1) 0.93 4.5 11.5 0.0 1.3 0.0
11-0-2-5 0.91 4.5 10.9 0.0 1.8 5.2
11-2-2+Si 1.1 4.4 11.3 1.88 1.8 0.0
11-2-2+Si+Ti 1.05 4.5 11.2 1.9 1.7 0.0
11-2-2+Si+Ti (1) 1.04 4.2 11.1 1.8 15 0.0
11-2-2+Si+Nb 1.0 4.4 11.2 1.95 1.7 0.0
11-2-2+Si+Nb (1) 1.02 4.5 11.3 1.82 1.4 0.0
11-2-2-5 1.03 4.5 11.3 1.94 1.8 4.9

Table 2. Chemical compositions of high-speed stgadsified in standard [14] used for development
of the hardness models

Steel grade Average mass concentration of theiafjalement, %
C Cr W Mo \ Co
HS18-0-1 0.78 4.15 17.95 0 1.1 0.0
HS0-4-1 0.81 4.15 4.25 1.1 1 0.0
HS1-8-1 0.82 4.15 8.5 2.85 1.2 0.0
HS6-5-2 0.84 4.15 4.95 6.3 1.9 0.0
HS1-4-2 0.9 3.95 4.45 1.8 1.95 0.0
HS6-5-2C 0.9 4.15 4.95 6.3 1.9 0.0
HS6-5-2-5 0.91 4.15 4.95 6.3 1.9 4.75
HS3-3-2 0.99 4.15 2.7 6.3 2.35 0.0
HS2-9-2 1.0 4.15 8.7 1.7 1.95 0.0
HS6-6-2 1.05 4.15 6 6.3 2.45 0.0
HS2-9-1-8 1.1 4.15 9.5 1.55 1.1 8.0
HS6-5-3 1.2 4.15 4.95 6.3 2.95 0.0
HS10-4-3-10 1.28 4.15 3.55 9.5 3.25 10
HS6-5-3-8 1.28 4.15 5.0 6.3 2.95 8.4
HS6-5-3C 1.29 4.15 4.95 6.3 2.95 0.0
HS6-5-4 1.33 4.15 4.6 5.6 3.95 0.0
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Table 3. Chemical compositions of high-speed stgstsified in [15] used for development
of the secondary hardness models
Steel type Average mass concentration of the altpglement, %
C Cr w Mo \% Co
1-5-1-8 0.72 4.0 5.0 1.0 1.0 8.0
18-0-1 0.75 4.1 18 0 11 0
2-9-1 0.83 3.8 8.5 1.8 1.2 0
0-4-1 0.84 4.0 4.2 0 11 0
1-5-2 0.89 4.0 4.5 1.2 1.9 0
6-5-2 0.9 4.2 5.0 6.4 1.8 0
2-5-1-2 0.91 3.7 5.0 1.8 1.2 25
6-5-2-5 0.93 4.2 5.0 6.4 1.8 4.8
3-3-2 0.99 4.1 2.7 2.8 2.4 0
2-9-2 1.02 3.8 8.6 1.8 1.9 0
5-6-2-8 1.05 4.0 6.0 5.0 1.6 7.8
6-6-2 1.05 4.0 6.3 6.3 25 0
2-9-1-8 1.08 3.8 9.4 15 1.2 8.0
4-8-3 1.2 4.2 8.5 3.5 3.0 0
6-5-3 1.2 4.1 5.0 6.3 3.0 0
10-4-3-10 1.27 4.0 3.6 9.5 3.2 10.0
12-1-4 1.28 4.2 0.8 12 3.8 0
6-5-4 1.3 4.2 4.5 5.6 4.0 0
9-4-3-11 141 4.2 3.6 8.8 3.4 11.0
Table 4. Chemical compositions of high-speed stesdsl in supplementary investigations
Steel grade Mass concentration of the alloying element, %
C Cr w Mo \% Co
HS 6-5-2 0.9 4.19 6.13 4.84 1.99 0.02
HS 18-0-1 0.85 4.08 17.57 0.56 1.3 0.07
HS 10-4-3-10 1.26 4.28 9.04 3.31 3.54 9.92

Table 5. Austenitizing- and tempering temperatuisesd for HS6-5-2 steel

Austenitizing tempertur€C Tempering temperature, °C
1150
1180 500 550 580
1225

Soft annealing temperature 860°C
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Table 6. Austenitizing- and tempering temperatused for HS18-0-1 steel

Austenitizing tempertureC Tempering temperature, °C
1180
1220
1255
1280
Soft annealing temperature 860°C

520 550 580

Table 7. Austenitizing- and tempering temperatused for HS10-4-3-10 steel

Austenitizing tempertureC Tempering temperature, °C
1180 540 560 580
1200 540 560 580
1225 540 560 580
1240 540 560 580
Soft annealing temperature 880°C

Hardness tests with Rockwell method in scale C voargied out on the automatic
ZWICK ZHR hardness tester. Each time 15 readinggweade and their arithmetic average
was assumed as the test result. InvestigationeoKihfactor was carried out according to
standard [16] using the three-point bending method.

3. MODELLING OF THE HIGH-SPEED STEELS PROPERTIES

For development of hardness models results wer afs@vestigations carried out on
the newly developed high-speed steels, relevandatds, and manufacturers' catalogues.
The austenitizing temperature range for which tkpedamental data was processed is
1120°C-1280°C, and the tempering temperature reng@0°C-630°C.

Results of the supplementary investigations weteused for development of models
and were used only for the final experimental veaiion of the developed models.

As tools for development of models making compatatof the high-speed steels
hardness possible based solely on their chemicaiposition, as well as on their
austenitizing- and tempering temperatures theviollg were used:

« statistical method of multiple regression,
 artificial neural networks.

The main assumption made first was that steel ledinlepends on concentrations
of the main alloy elements occurring in these ste&arbon, chromium, tungsten,
molybdenum, vanadium, and cobalt, as well as onr thestenitizing- and tempering
temperatures.

In the multiple regression method the general fofrine equation - model was used:
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HRC = iafi(x) (1)

where: a— coefficients of the regression equation, HRE&teel hardness; £ functions
of the equation variables, X - vector of the emmatariables, (X = [% C, % Cr, ..., Ta,
Tt)).

In the second high-speed steels hardness calaulatiethod the artificial neural
networks were used of the multilayer perceptrore tygmploying various learning methods.
Use of a constant number of input neurons was ddc{fl) as a consequence of the main
assumption that hardness depends on C, Cr, W, V,add Co, as well as on the
austenitizing- and tempering temperatures. The yaedl networks had 1 output
corresponding to the steel hardness. The numbergidofen layers and neurons were
modified in the investigations.

The adequacy of the developed models was checkaddlysing the error between the
calculated hardness and its corresponding hardestsl experimentally. The average error
for the tested data file was assumed as the cniteri

y (HRC, - HRC,,)
i=1

R= -

. @

where:N — test file size, HRE — calculated hardness-{h), HRG,; — measured hardness
(i—th).

The assumption was made that the model that woualklenit possible to obtain the
calculation error ca. 1 HRC will be a valid one.

3.1. STATISTICAL MODEL OF HARDNESS

Based on the prepared experimental data set sewstiematical models were
analysed for computation of steel hardness basetieoalloy elements concentrations and
heat treatment of the high-speed steels.

Results of these mathematical models analysis atelithat hardness calculations for
the various forms of the mathematical equation tenthe computation error value of 0.7
HRC. Therefore, model (3) demonstrating the contprigerror of 0.71 was assumed to be
the best one and used in the next analyses.

HRC = 51[C - 013[Cr - 006[W + 011[Mo— 081V + 017[Co-214[Ta
— 163[To+ 037(Ta? - 486[To? +5823/(ToTa) — 2346{Ta/To) (3)

It should be noted that in case of the austengizand tempering temperatures their
readings were divided by 100. Therefore, usingdéneloped mathematical models, the real
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temperature should be presented in this way agiab¥a in the model. So, e.g., if the real
austenitizing temperature is 1200°C, then its valfter normalising should be entered to the
model, i.e., 12.

3.2. NEURAL NETWORK MODEL OF HARDNESS

Next, the artificial neural networks were used floe secondary hardness modelling.
Results of the experimental research, containinfpramation about the chemical
compositions and the steel hardness test reshtigirsin Tables 1-3, feature the base for the
neural networks design. A set of 2714 referencadstals was available, which may be
considered as the sufficient number to develogdul adequate neural networks model.

It was assumed, referring to the developed newtlorks structure, that the network
has 8 inputs, corresponding to concentration vabdi¢ke six main alloy elements occurring
in this steel group and to the austenitizing- amghdering temperatures, and one output,
corresponding to hardness. The StatSoft STATISTKE#uUral Networks v. 4.0 program
was used for development, training, and testintpefeural networks.

Several hundred neural networks were generated e Statistica Neural Network
program with the various numbers of neurons in Hfdgen layers. Some of them were
eliminated at the initial design stage due to tkeessive error or the excessive number
of neurons in the hidden layers. Training errorpyrdor every network was studied after
completing the training process or in its coursas&l on that the networks were checked if
the overtraining did not take place and the overgg ones were eliminated from the
subsequent analysis. The average absolute erratjequ of standard deviations, and
correlation coefficient were assumed as the netwquklity coefficients. Finally one
network was selected, from the entire set of theeldped networks -the multilayer
perceptron with the 8-7-1 structure (i.e., 8 inpitreurons in the hidden layer, and 1
output), with the average calculation error of OBRC. Quality coefficients of the
developed network are shown in Table 8. The dewdomodels were subjected to
additional verification based on the supplementaryestigation results. Hardness
calculations were made using the developed models steels with chemical
compositions presented in Table 4. The calculagéioonrs were estimated next

Table 8.Quality coefficients of the neural netwddveloped for the steel hardness calculation

Network structure | Training method/number of Data set
training epochs Training | Validating | Testing
Average absolute error, HRC
0.53 | 0.57 | 0.59
MLP 8.7-1 BP/50 Quotient of standard deviations
CG/462 0.23 | 0.25 | 0.27
Correlation coefficient
0.97 | 0.97 | 0.96
BP — error back-propagation learning method, C@njugate gradients learning method
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Fig. 1. Comparison of experimental results and mesd calculations for 9-2-2+Si steel (left) and-2-8 steel (right)

according to Eq. 2, which for the statistical modald neural network are 0.39RC
and 1.01 HRC respectively. Therefore, one can dtadé the developed models meet
fully the calculation accuracy assumptions. In Figcomparison of the calculated and
experimental tempering curves are shown for setesteels, from all included in the
data set used to develop the models.

3.3. HIGH-SPEED STEELS FRACTURE TOUGHNESS MODEL

The further works were focused on development tloeleh making it possible to
determine the high-speed steel fracture toughnesdysbased on the steel chemical
composition and heat treatment parameters. Thicettineural networks were used as a
modelling tool. It was assumed, referring to theedeped neural networks structure, as in
case of hardness modelling, that the network hagp@ts, corresponding to concentration
values of the six main alloy elements occurringhiis steel group and to the austenitizing-
and tempering temperatures, and one output, camnespy to the value of the fracture
toughness K.

The StatSoft STATISTICA Neural Networks v. 4.0 prag was used for
development, training, and testing of the neurélvoeks. After entering the training data to
the program, the neural network design processsteaited.

Several dozen neural networks were generated ubmgrogram, with the various
numbers of neurons in the hidden layer. About bélthem were eliminated immediately
due to the excessive error or the excessive nupfo@eurons in the hidden layers. Training
error graph for every network was studied after pl@tng the training process or in its
course. Based on that the networks were checkexd ibvertraining did not take place and
the overtrained ones were eliminated from the syleset analysis. The average absolute
error, quotient of standard deviations, and cofi@bacoefficient were assumed as the
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network quality coefficients. Finally one networkasvselected, from the entire set of the
developed networks -the multilayer perceptron wilik 8-6-1 structure (i.e., 8 inputs, 6

neurons in the hidden layer, and 1 output), wite #verage calculation error of 0.39
MPa-nt’. Quality coefficients of the developed network shewn in Table 9. Comparison

of the calculated K coefficient values with the experimental datahewn in Fig. 2.

Table 9. Quality coefficients of the neural netwdsveloped for the fracture toughnessdalculation

Training method/ Data set
Network structure - . —
number of training epochs learning | validating

Average absolute error, MPal’”?
BP/50 039 | _0.39
MLP 8-6-1 Quotient of standard deviations
CG/56 0.15 | 0.22

Correlation coefficient
0.99 | 0.98
BP — error back-propagation learning method, C@nrjugate gradients learning method

Austiniising temperature Ta=1226 Austinitising temperature Ta=1228
22 22
—{1— Experimental
20 20 —0— Calculated ]
g 18 = 18
e
* *
g 16 s g 16
S g
Z 14 W g 14
12 —— Experimental-| 12
—O— Calculated W
10 T T T T 10 T T T T T
490 510 530 550 570 590 530 540 550 560 570 580 590
Tempering temperaturC Tempering temperatur&C

Fig. 2. Comparison of the calculateg Boefficient with the experimental data for HS6-5t2el (left) and 10-4-3-10 (right)

4. OPTIMISATION OF CHEMICAL COMPOSITION OF HIGH-S#ED STEELS

For the high-speed steels chemical compositionggulesvhich is the optimisation
problem, the evolutionary algorithms were usede ®hject function is the index defining the
set of the optimised properties, in this case hesdrand fracture toughness. It was assumed
that it will be possible to determine weights fack property, which will make it possible to
make a decision which of the properties in themisttion procedure actually carried out is
the most important one. The optimisation resulthvhe maximum secondary hardness as the
goal, are the chemical compositions high-speedsstath the highest hardness, and with the
fracture toughness as a goal, the chemical conposibf steels demonstrating the highest
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fracture toughness K Moreover, the possibility was assumed to limé #earch area for the
optimum chemical composition meeting the assumddrier. Because of the form of the
developed material models employed for design efdhemical composition, not only the
alloy elements concentrations are optimised, & #te heat treatment parameters, i.e., the
austenitizing- and tempering temperatures.

The assumptions made were used in optimisatiortaiperg to relationships among
the particular concentrations of the alloy elemertsurring in the high-speed steel and its
hardening- and tempering temperatures - and ifggoti@s. The own computer program was
developed to carry out the high-speed steel chémiraposition optimisation task, with the
maximum hardness and fracture toughness as theigoahich the genetic algorithm was
employed with the hardness- and fracture toughfugsgions as the neural network models.

The object function was optimised expressing thghtspeed steel hardness and its
fracture toughness in the following form:

Z =alHRC(x) +b[K,.(x) (4)

where: HRC(x) - hardness function (neural networedsl), K.(x) — fracture toughness
function (neural network model);,x vector of parameters (mass concentrationsloyiab
elements, austenitizing- and tempering temperatueesb — weight coefficients for both
of the object function components, assuming valu@s the <0;1> range.

The chemical composition optimisation procedurdschir specifying the limits the
optimised function parameters, i.e., alloy elemewrtncentrations ranges and the
austenitizing- and tempering temperatures. Baseanaiysis of concentrations of chemical
compositions of steels shown in Tables 1-3, opatos limits used in the genetic algorithm
are presented in Table 8; whereas, the additiomaitakions are listed in Table 9.
The roulette method was used in this algorithnstection.

Parameters of the algorithm defined by the usénendeveloped program are:

* Number of generations - determines the number of algorithm repetitions.

* Population size - number of individuals.

» Crossing coefficient - value from the range from 0 to 1 (O denotesprabability
of crossing equal to 0, 1 denotes the probabilit§.2), specifying probability of the
selection of the relevant pair of specimens tosiam the population (default value
of 1).

« Mutation coefficient - value from the range from 0 to 1 (0O denotespirabability
of mutation equal to 0, and 1 denotes the prolgtoli 0.2), specifying probability
of the selection of the particular specimen for amioh operation (default value
of 0.5).

» Accuracy of calculations - specifies precision of the environment search.

 Weightsaand b - specifying weights attributed to each objectction component.

The optimisation algorithm functioning consists sach selection of the alloying
elements and hardening- and tempering temperasortdsat the chemical composition of the
steel is obtained with the possibly highest hardnesd fracture toughness, while
maintaining proportions for these properties spedifby their weights (Eq. 4). The
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developed own computer program makes investigapossible pertaining to designing the
chemical composition of steel with the requireddmass and fracture toughness. Arbitrary
defining is possible, within the optimisation limitof the search space of the optimum
chemical composition of the high-speed steel. Meeeoprovision is made in the program
for adjustment of the optimisation parameters, Wioan also affect the calculations results,
I.e., the arbitrary selection of the set of pararsetonnected with managing the population.
One should clearly stress that computations yidli@rént results each time which results
from drawing the initial population. As an illustian of research carried out using the
developed program two selected examples are pezbenit the chemical composition
optimisation results, obtained for various genatgorithm parameters and for various limits
imposed on the search space of the optimum cheocaposition.

Table 10. Boundary of the optimisation procedure

Parameter C Cr wW Mo \% Co Ta Tt
MIN 0.72 3.7 0 0 1 0 1150 500
MAX 1.41 4.7 18 9.5 4.5 11 1280 630
Table 11. Optimisation procedure constrains usexiculation
Constrain Cr+W+Mo+V+Co (Cr+W+Mo+V+Co)/C Mo+V+Co W+dAV
MIN 9.3 111 1.1 5.3
MAX 31 30.9 18.7 19.2
Example 1
Algorithm parameters
Number of generations 100 Coding precision 8 hits
Number of individuals 50 HRC Weight 1
Crossing coefficient 1 KWeight 1
Mutation coefficient 0.5 Number of the best individis 2
Optimisation limitations
Parameter C,% Cr, % W, % Mo, % V, % Co, % K& Tt,°C
Minimum value 0.72 3.7 2 2 1 0 1150 500
Maximum value 1.41 4.7 18 9.5 4.5 11 1280 63
Calculation results
Stiool::- %C | %Cr| %W| %Mo| %V| %Cd T | Tt’C | Fues Foop | HRC Kic
1 1.22 467 | 1053 2.12 1.9¢ 1.1p 1253 512 84.3 81.%56.4 17.9
2 1.16 4.65 2.13 4.24 1.06 10.01 12%4 589 86.9 80.88.5 18.5
3 0.99 4.59 3.51 2.24 1.0d 7.72 1264 533 87.5 8p.58.8 18.6
4 1.18 4.61 2.13 3.35 1.37 3.62 1253 585 86.0 7B.57.0 19.0
5 1.34 4.68 9.03 3.62 1.0d 0.69 1267 501 85.3 70.%7.1 18.1
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Example 2

Algorithm parameters

Number of generations 100 Coding precision 8 bits
Number of individuals 50 HRC Weight 0.95
Crossing coefficient 1 KWeight 1
Mutation coefficient 0.5 Number of the best individis 2

Optimisation limitations

Parameter C,% Cr, % W, % Mo, % V, % Co, % K& Tt,°C
Minimum value 0.72 3.7 2 2 1 0 1190 520
Maximum value 1.41 4.7 18 9.5 4.5 11 1240 590

Calculation results

SUOO':]J %C | %Cr| %W| %Mo| %V| %Cd TL| Tt°C | FRest | Foop | HRC | K
1 0.86 | 420| 3.00] 271 117 1083 1215 572 81 74.87.1 | 183
2 0.98 | 440| 551 244 112 651 1212 530 80.9 74.B7.2 | 17.0
3 1.09 | 468| 395 200 225 004 1205 584 847 88.54.0 | 23.9
4 0.83 | 445| 401| 335 162 1.8l 1226 578 814 80.®B44 | 20.2
5 116 | 461 577] 235 223 o00p 1235 5f7 80.8 7b.55.9 | 18.2
5. SUMMARY

The main goal of the research carried out was dpusd the design methodology for
the new high-speed steels with the required pr@serincluding hardness and fracture
toughness, as the main properties guaranteeinigighedurability and quality of tools made
from them. It was decided that hardness and fractoughness K are the criteria used
during the high-speed steels design. To this erdrelevant models were developed - for
hardness and for fracture toughness expressed thahK,. coefficient. The developed
material models were used for designing the chdnaimapositions if the new high-speed
steel, demonstrating the desired properties, if@ardness and fracture toughness.
Methodology was developed to this end, employing tevolutionary algorithms,
multicriteria optimisation of the high-speed steeleemical composition. The developed
own computer program makes investigations posgibléaining to designing the chemical
composition of steel with the required hardnessfamcture toughness. Arbitrary defining is
possible, within the optimisation limits, of theaseh space of the optimum chemical
composition of the high-speed steel. Solutions gl in the work, based on using the
adequate material models may feature an interestitggnative in designing of the new
materials with the required properties. The prattaspect has to be noted, resulting form
the developed models, which may successfully repthe above mentioned technological
investigations, consisting in one time selectiontieé chemical composition and heat
treatment parameters and experimental verificatbbthe newly developed materials to
check of its properties meet the requirements.
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The presented approach to new materials desigmghbiie new materials design
philosophy, assumes the maximum possible limitabércarrying out the indispensable
experiments, to take advantage of the existing ex@atal knowledge resources in the form
of databases and most effective computer scienals, toncluding neural networks and
evolutionary algorithms. It should be indicated tthiae materials science knowledge,
pertaining oftentimes to the multi-aspect classabfems and described, or - rather - saved
in the existing, broadly speaking, databases, featthe invaluable source of information
which may be used for discovery of the unknown &b relationships describing the
material structure - properties relations. The mask is integration of the materials science
knowledge and computer science tools to find th&, nendiscovered yet relationships and
development of materials models based on the kmigele which was acquired in
experimental research over many years. Using thquate material models makes carrying
computer simulations out, which let forecastingguole of materials properties in various
configurations of, say, chemical composition, pssteg stage (e.g., heat treatment) or
product type.
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