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FETAL STATE ASSESSMENT EFFICACY

Cardiotocographic (CTG) monitoring is a method of assessing fetal state. Since visual analysis
of CTG signal is difficult, methods of automated qualitative fetal state evaluation on the basis of the
quantitative description of the signal are applied. The appropriate selection of learning data influences
the quality of the fetal state assessment with computational intelligence methods. In the presented
work we examined three different feature selection procedures based on: principal components ana-
lysis, receiver operating characteristics and guidelines of International Federation of Gynecology and
Obstetrics. To investigate their influence on the fetal state assessment quality the benchmark SisPortor
dataset and the Lagrangian support vector machine were used.

1. INTRODUCTION

Cardiotocographic (CTG) monitoring is a method of biophysical assessment of fetal state
during pregnancy and labor. It consists in acquisition and analysis of fetal heart rate (FHR),
uterine contractions and fetal movements signals. Visual analysis of registered signals is dif-
ficult [11], so computerized fetal monitoring systems offering quantitative signal analysis are
used. Despite increasingly advanced algorithms of the quantitative signal description, effective
procedures of qualitative fetal state assessment are still the aim of research. Computational
intelligence methods are applied to help in medical data analysis [8], also to CTG data. The
literature shows the examples of cardiotocograms classification with fuzzy systems [22], [4],
artificial neural networks [10], [18], [13], neuro-fuzzy systems [7], [20], [6] and support vector
machines (SVMs) [19], [25]. The effectiveness of classification is highly dependent on the
proper selection of features. Different studies [3], [24], [19], [17], [12] investigated the influence
of the CTG features selection on the assessment quality of the fetal state. In the presented
paper, we applied three different feature selection methods: principal components analysis
(PCA), receiver operating characteristics (ROC) and guidelines of International Federation of
Gynecology and Obstetrics (FIGO). The influence of the applied procedures on the fetal state
assessment quality was verified with the benchmark CTG dataset [1] using the Lagrangian
support vector machine (LSVM) [15].
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2. MATERIAL AND METHODS

2.1. THE CTG DATASET

The research material used in our study is the SisPortor dataset of CTG signals from UCI
Machine Learning Repository [2] (obtained from http://archive.ics.uci.edu/ml/
datasets/Cardiotocography in August 2013). It consists of 2126 signals described
by 21 quantitative parameters (Table 1). The reference signal assessment was determined by
three expert obstetricians and a consensus classification label was assigned to each of the
cardiotocograms. Classification was both with respect to a morphological pattern (10 classes)
and to a fetal state (3 classes: Normal (N), Suspect (S), Pathological (P)). Therefore, the dataset
can be used either for 10-class or 3-class experiments. In the presented work the experiments
concerning the three-class classification problem were performed. The respective numbers of
cases in the distinguished classes of signal patterns are the following: 1655 (N), 295 (S), 176
(P). Research on the three-class classification of the SisPortor dataset was also presented in
[17], [25]. The binary classification problem after rejecting the Suspect class was shown in
[19], [20] as well.

Table 1. The quantitative description of the considered set of CTG signals.

LB FHR baseline (beats per minute) AC no. of accelerations per second
FM no. of fetal movements per second UC no. of uterine contractions per second
DL no. of light decelerations per second DS no. of severe decelerations per second
DP no. of prolonged decelerations per second ASTV percentage of time with abnormal short term variability

MSTV mean value of short term variability ALTV percentage of time with abnormal long term variability
MLTV mean value of long term variability Width width of FHR histogram

Min minimum of FHR histogram Max maximum of FHR histogram
Nmax no. of histogram peaks Nzeros no. of histogram zeros
Mode histogram mode Mean histogram mean

Median histogram median Variance histogram variance
Tendency histogram tendency

2.2. FEATURE SELECTION METHODS

Principal component analysis (PCA). On the basis of the original dataset the PCA method
[16] creates a new set of features, called principal components. Each principal component
is a linear combination of original features and all principal components are orthogonal to
each other. The first principal component is chosen in such a way that its variance is the
maximum among all possible choices. The second principal component is chosen so that to
be perpendicular to the first and to have the maximum variance among all possible choices.
The maximum number of principal components is the same as the number of original features
however, the sum of variances of first few principal components often explains most of the total
variance of the original data. The PCA may be performed using covariance or correlation matrix.
In the presented work the correlation matrix was used. Features Nmax, Nzeros, Tendency
were excluded from PCA processing due to their discrete character. The number of principal
components which explain 90% of the total variance was chosen.

Receiver operating characteristics (ROC). ROC are two-dimensional graphs where true
positive rate (sensitivity) is plotted against false positive rate (1-specificity) as a classifier
discrimination threshold is varied [9]. The area under the ROC curve (AUC) is a popular
measure of a classifier performance. Its value varies within the range [0, 1]. The higher value
of AUC of a given classifier, the higher performance it has. In the presented work ROC was
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applied to assess predictive capabilities of all 21 CTG features [5]. According to the scale of
predictive capabilities [5] it was assumed to choose features with AUC ≥ 0.7 for the further
assessment.

Guidelines proposed by International Federation of Gynecology and Obstetrics (FIGO).
FIGO proposed guidelines concerning electronic fetal monitoring [21]. Among many recom-
mendations, they describe also criteria of cardiotocograms interpretation based on the evaluation
of the CTG signal. The FIGO criteria include the assessment of baseline, long term variability,
accelerations and decelerations episodes. Uterine contractions are also taken into consideration.
In our research we applied the features that correspond to FIGO recommendations (Table 8).

The applied feature selection methods represent various approaches for determining the best
discriminant set of the CTG signal features. PCA analyzes only relations between classifier
inputs (features) and does not take into consideration a cardiotocogram class. Information
described by ROC in the assumed manner is determined based on the relation between the
cardiotocogram class and the given single feature value as its discrimination threshold is
varied. Features selected with FIGO guidelines are chosen on the basis of the medical expert
knowledge.

2.3. CLASS-CLASS METHODOLOGY

To assess the fetal state we used the Lagrangian support vector machine [15] binary classifier
with the Gaussian kernel function K (x, xi) = exp

(
−χ ‖x− xi‖2

)
; where χ ∈ IR+ is the kernel

parameter. LSVM is a technique for training support vector machines in which the quadratic
programming was replaced with computationally efficient iterative approach. To perform the
three-class classification, the class-class (one-against-one) methodology was applied. According
to it, the fetal state assessment is the result the CTG signal evaluation with three binary
classifiers distinguishing cases (xi): Normal and Suspect (NS), Normal and Pathological (NP),
and Suspect and Pathological (SP). For each binary classifier, the processed input vector need
to be properly labeled. In the presented study we used: N = +1, S = -1 for NS, N = +1, P = -1
for NP, and S = +1, P = -1 for SP classifier. The resulting desired outputs of binary classifiers
are shown in Table 2.

Table 2. Binary classifiers of CTG signals.

NS NP SP

NS (xi) =

{
> 0, xi ∈ N,
≤ 0, xi ∈ S, NP (xi) =

{
> 0, xi ∈ N,
≤ 0, xi ∈ P, SP (xi) =

{
> 0, xi ∈ S,
≤ 0, xi ∈ P.

The three-class assessment of the fetal state is determined according to the Table 3. For
inconclusive cases (marked by the symbol ×) the label provided by the binary classifier with
the highest absolute value of discriminant function is assumed as the final result.

Table 3. Rules of assigning the final result of the fetal state evaluation.

Binary classifiers answer

NS S S S S N N N N
NP P P N N P P N N
SP P S P S P S P S

Fetal state P S × S P × N N
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Fig. 1. The confusion matrices for the three-class classification problem (N: i = 1, S: i = 2 and P: i = 3).

2.4. THE LEARNING PROCEDURE

For the purpose of the correct LSVM classification, the considered dataset was normalized
to the range [–1, +1]. Next each class of cases was 50 times randomly divided in learning
(50%) and testing (50%) part to form learning and testing subsets for binary classifiers. In case
of odd number of cases in a given class, additional case was added to the testing part. Using
first 5 pairs of subsets, separately for each binary classifier, values of the LSVM parameter (ν)
and kernel function (χ) ensuring the highest classification quality (QI, described in the next
paragraph) were chosen from the set {0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, . . . , 700, 1000}.
The rest of LSVM parameters was set to default [15]. Having established values of ν and χ,
we evaluated each of binary classifier using remaining 45 pairs of learning and testing subsets.
The final testing subset for the three-class classification problem was formed by merging the
45 testing parts of three classes with original class labels.

The performance of the binary classifiers was assessed based on the confusion matrices. The
classification accuracy (CA) was defined as the percentage of correctly classified cases from
the testing subset. The class labeled as –1 (S in NS, P in NP and SP classifiers) was considered
as ”positive” in calculation of sensitivity (SE) and specificity (SP). To make the analysis of
the classification results easier we applied also the overall quality index (QI =

√
SE · SP). The

final performance of three-class classification was measured with indices [23] presented in the
Table 4. In the presented work all considered measures are expressed in percents. Quantities
TPi, TNi, FPi, FNi are calculated [14] for a given class (N: i = 1, S: i = 2 and P: i = 3) -
see figure 1.

Table 4. Performance measures of three-class classification.

AE =

∑3
i=1

TPi+TNi
TPi+FNi+FPi+TNi

3
the average per-class effectiveness of a classifier

SEM =

∑3
i=1

TPi
TPi+FNi
3

the average per-class sensitivity

SPM =

∑3
i=1

TNi
FPi+TNi
3

the average per-class specificity

QIM =
√

SEM · SPM the average per-class quality index

2.5. REJECTION OF REPEATED AND CONTRADICTORY CASES

As a result of the initial analysis of the research material entries with equal values of signal
features were found. There were observed repeated cases (ReC) - representing the same class,
and contradictory cases (CoC) - belonging to different classes. Consequently, we decided
to apply three different classifier learning and testing approaches. Firstly, the unambiguous
learning and testing subsets for a given feature vector (set) were prepared. To do that, from
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ReC only one case was left, and all CoC were rejected. The following rejection procedure was
applied:

1) Separate Normal, Suspect and Pathological class from the original dataset.
2) Leave only one ReC (for a given feature vector) in each class.
3) Merge obtained classes into a single dataset.
4) In the obtained dataset find and reject all CoC (for a given feature vector) obtaining

unambiguous dataset.

The rejection procedure was performed for all 21 features and for a set of features selected with
FIGO guidelines. PCA was performed on the unambiguous dataset obtained for the selected 18
features (after rejecting the discrete characteristics). In case of ROC there were three different
feature sets, each for given binary classifier. In that case, the rejection procedure was firstly
applied for NP classifier feature vectors. Next, using the obtained unambiguous dataset, the
rejection procedure was applied for SP classifier feature set. In the last step, the feature set
for the NS classifier was analyzed. Numbers of cases rejected applying all features and three
feature selection methods are summarized in the Table 5.

Table 5. The number of rejected Repeated Cases (ReC) and Contradictory Cases (CoC).

ReC CoC Total

N S P

ALL 12 4 10 5 1PCA
FIGO 14 4 11 5 2
ROC 27 6 20 9 4

The obtained unambiguous dataset was used to form unambiguous learning and testing parts
of a given class and learning and testing subsets. The classification procedure using the resulting
subsets was called ”unambiguous learning - unambiguous testing” (ULUT). In the second
approach, cases rejected from a given class were 50 times randomly divided in half and added
to existing 50 unambiguous learning and testing parts. Such procedure led to ”ambiguous
learning - ambiguous testing” (ALAT) approach. Combination of unambiguous learning and
ambiguous testing was called (ULAT). ULUT, ALAT and ULAT were performed for all features
and for all applied feature selection methods. The sizes of learning (L) and testing (T) parts
(ULUT) along with number of cases (in parenthesis) added to each part (ALAT and ULAT)
are presented in the Table 6.

Table 6. Number of cases in learning (L) and testing (T) part for a given class of CTG signals.

Normal Suspect Pathological

L T L T L T

ALL 822 (+5) 823 (+5) 145 (+2) 145 (+3) 87 (+0) 88 (+1)PCA
FIGO 822 (+5) 822 (+6) 145 (+2) 145 (+3) 87 (+1) 87 (+1)
ROC 817 (+10) 818 (+10) 143 (+4) 143 (+5) 86 (+2) 86 (+2)

The presence of ReC and CoC in ALAT and ULAT subsets was verified. Table 7 presents
statistics of number of pairs of ReC and CoC for the final testing subsets. In case of ROC the
verification was done three times (for each binary classifier feature vector) and the presented
values are averages.

55



MEDICAL DATA ANALYSIS AND MONITORING SYSTEMS

Table 7. The number of pairs of ReC and CoC in final testing subsets for the ALAT and ULAT approaches.

ALL PCA FIGO ROC

ReC 4.3 (1.64) 4.0 (2.12) 5.1 (2.20) 5.5 (2.02)
CoC 0.5 (0.51) 0.8 (0.74) 0.5 (0.63) 0.7 (0.76)

mean value (standard deviation)

3. RESULTS AND DISCUSSION

In the first stage of our experiment we applied the proposed feature selection methods. Table
8 presents sets of features obtained for all considered procedures. Features of the quantitative
description of CTG signals selected with PCA (10 new features) and FIGO (9 features) are
common for all three binary classifiers. In case of ROC three different sets were determined
(12 features for NS classifier, 7 for NP and 8 for SP).

Table 8. Features sets obtained for different selection methods.

NS NP SP

ALL all 21 features
PCA 10 first principal components (92.25% of variance explained)
FIGO LB, AC, UC, DL, DS, DP, ALTV, MLTV, Width

ROC LB, AC, UC, ASTV, MSTV, ALTV, Width, AC, DP, ASTV, MLTV LB, DL, DP, MLTV, Min,
Min, Mode, Mean, Median, Variance Mode, Mean, Median Mode, Mean, Median

Classification performance of binary classifiers and ULUT experiment is presented in the
Table 9. In case of all applied feature selection methods the highest mean value of QI was
obtained for NP, and the lowest for NS binary classifier. It suggests, that the correct distinction
between Normal and Pathological is the easiest and between Normal and Suspect most difficult.
In case of NS and NP smaller number of features (PCA, FIGO, ROC) leads to the lower mean
value of QI. However, different feature selection methods decrease mean value of QI in a
different degree. It seems that the cause is different number of features selected using ROC for
these classifiers. For example, in case of NS mean value of QI decreases in the following order:
ROC (12 features), PCA (10), FIGO (9). In case of NP the decreasing order is as follows: PCA
(10 features), FIGO (9), ROC (8).

Results of three-class classification for ULUT experiment are presented in the Table 10.
Smaller number of features (PCA, FIGO, ROC) leads to lower mean value of QIM , similarly
to QI for binary classifiers.

Table 11 compares results of mean value of QIM obtained using ULUT, ULAT and ALAT
approaches. The learning with unambiguous dataset results in improvement of the classification
quality in most cases. Only with ROC based feature selection procedure the best results of the
fetal state evaluation was obtained with the ALAT approach. The differences of the mean QIM
values are however irrelevant. The reason seems to be a very small number of ReC and CoC
pairs in the ULAT and ALAT subsets (Table 7).

Since none of the applied feature selection methods increased the mean value of QIM , to get
the best quality of fetal state assessment all CTG signal features should be used. However, as
the differences seems to be irrelevant, the feature space reduction may be regarded as decreasing
the computational complexity of the classification procedure.

Research described in [17], [25] were also performed using the SisPortor dataset. In [17]
the influence of various feature selection methods on fetal state classification quality was
examined. There, in contrast to our results, the application of the feature selection method
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Table 9. The influence of the feature selection method on the performance of binary classifiers (ULUT approach).

NS NP SP

ν = 100, χ = 1 ν = 40, χ = 0.1 ν = 10, χ = 1

ALL QI 85.30 (2.327) 94.63 (1.629) 89.93 (1.943)
CA 93.52 (0.803) 98.61 (0.330) 90.98 (1.581)

ν = 700, χ = 0.7 ν = 10, χ = 1 ν = 1, χ = 7

PCA QI 83.00 (2.164) 94.34 (1.480) 90.67 (1.795)
CA 92.32 (0.814) 98.60 (0.308) 91.92 (1.518)

ν = 10, χ = 1 ν = 4, χ = 100 ν = 4, χ = 7

FIGO QI 79.74 (2.349) 93.12 (1.538) 90.42 (1.311)
CA 91.32 (0.594) 97.74 (0.372) 91.13 (1.193)

ν = 1000, χ = 0.4 ν = 1000, χ = 7 ν = 7, χ = 7

ROC QI 84.82 (2.519) 91.23 (2.533) 86.76 (2.078)
CA 92.85 (0.827) 97.36 (0.516) 88.14 (1.719)

mean value (standard deviation)

Table 10. The influence of the feature selection method on the three-class classification performance (ULUT approach).

ALL PCA FIGO ROC

AE 94.62 (0.497) 93.98 (0.581) 93.07 (0.433) 93.75 (0.492)
SEM 83.58 (1.701) 82.27 (1.751) 80.20 (1.783) 80.81 (1.876)
SPM 92.68 (0.882) 91.76 (0.860) 90.24 (0.902) 92.38 (0.880)
QIM 88.01 (1.244) 86.88 (1.285) 85.07 (1.350) 86.40 (1.344)

mean value (standard deviation)

Table 11. Comparison of the three-class classification quality QIM .

ALL PCA FIGO ROC

ULUT 88.01 (1.244) 86.88 (1.285) 85.07 (1.350) 86.40 (1.344)
ULAT 87.95 (1.224) 87.56 (1.212) 85.15 (1.353) 86.39 (1.311)
ALAT 87.93 (1.187) 86.80 (1.258) 84.96 (1.420) 86.96 (1.367)

mean value (standard deviation)

increased accuracy, specificity and mainly sensitivity (from 87.24% to 91.58%). However,
there is no detailed description concerning calculations of these quantities. In [25] the obtained
confusion matrix was presented. As a result it is possible to calculate QIM=86.74%. Since in
[25] the original dataset was applied, we can use for the comparison the results from ULAT
(QIM=87.95%) or ALAT (QIM=87.93%) approach when all features were assessed. It may be
observed, that our results are slightly better.

4. CONCLUSIONS

In the presented research the influence of feature selection methods on the fetal state classi-
fication performance with Lagrangian support sector machine was examined. The benchmark
SisPortor set of cardiotocographic signals was used. Three different methods representing
various approaches to the selection of the features of the quantitative description of CTG signals
were investigated. However, the best results were obtained if all features were used as classifier
inputs. We investigated also different approaches for the construction of the learning and testing
data. Removing the ambiguous cases from a dataset that is used for the classifier learning
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increases slightly the classification quality for both, ambiguous and unambiguous testing. Such
small improvement of the classifier is the result of small percentage of the ambiguous data in the
considered research material. However, this subject will be the topic of our future investigations.
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[11] JEŻEWSKI J., WRÓBEL J., HOROBA K., et al., Fetal heart rate variability: clinical experts versus computerized system

interpretation. Proc. of the 24th Annual International Conference of the IEEE EMBS, 2002, pp. 1617-1618.
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