PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study of adverse factors during training with Virtual Reality simulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, the dynamic development of information technology contributes to the increasingly widespread application of Virtual Reality (VR) as modern and effective methods and training tools used in the process of self-education and/or training related to understanding the essence of the principles of operation and mastering the tasks of operating even complex systems or technical processes through simulating their actions. A significant argument for the use of virtual reality simulators in training uniformed services is the favorable cost-effect ratio and considerations of trainee safety. However, the use of VR simulators may be accompanied by the possibility of side effects or intensified symptoms of the so-called cybersickness. Bearing this in mind, the purpose of this article is to present the results of preliminary studies of adverse factors occurring during training using a VR simulator. The theoretical foundation for empirical research was provided by the results of a conducted review and analysis of literary content. Among the empirical methods, studies were conducted using a simulator sickness questionnaire and a research trial according to the parallel triangulation strategy scheme, involving the simultaneous use of quantitative and qualitative methods. The results obtained in this way can provide a valuable source of information about factors increasing the risk of adverse symptoms of cybersickness and ways of their mitigation, and can serve for further work on their development and application of VR simulators.
Rocznik
Tom
Strony
35--48
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Polish Airforce University, Dęblin, Poland
  • 3. Warsaw Air Defense Missile Brigade, Sochaczew, Poland
  • Military University of Technology, Warsaw, Poland
Bibliografia
  • 1. Biernacki M. P., Kennedy R. S., Dziuda Ł., Zjawisko choroby symulatorowej oraz jej pomiar na przykładzie kwestionariusza do badania choroby symulatorowej – SSQ, „Medycyna Pracy’, 2016, nr 4(67), s. 545-555;
  • 2. Bimberg P., Weissker T., Kulik A., On the Usage of the Simulator Sickness Questionnaire for Virtual Reality Research, “2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)”, 2020, p. 464-467;
  • 3. Bles W., Wertheim A.H., Appropriate Use of Virtual Environments of Minimise Motion Sickness, What Is Essential for Virtual Reality Systems to Meet Military Human Performance, “RTO-MP-058 AC/323(HFM-058)TP/30”, 2001, No 7, p. 1-9;
  • 4. Bowman D.A., Allison D., Hodges L.F., Wineman J.D., The Educational Value of an Information-Rich Virtual Environment, „Presence: Teleoperators and Virtual Environments”, 2001, No 10(3), p. 282-297;p
  • 5. Brooks J.O., Simulator sickness during driving simulation studies, „Accident Analysis & Prevention”, 2010, 42(3), p. 788–796;
  • 6. Cobb S., Nichols S., Ramsey A., Wilson J., Virtual reality-induced symptoms and effects (VRISE), „Displays”, 1999, No 29(2), p. 58-69;
  • 7. Creswell J.W., Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (3rd ed.), SAGE, 2009, 1-270;
  • 8. Dalladaku Y., Kelley J., Lacey B., Mitchiner J., Welsh B., Beigh M., Assessing the effectiveness of virtual reality in the training of army aviators, „Proceedings of the 2020 Annual General Donald R. Keith Memorial Capstone Conference”, 2020, p. 45-50;
  • 9. Davis S., Nesbitt K., Nalivaiko E., A systematic review of cybersickness, „IE2014: Proceedings of the 2014 Conference on Interactive Entertainment”, 2014, p. 1-9;
  • 10. Fisher R.S., Acharya J.N., Baumer F.M., French J.A., Parisi P., Solodar J.H., Szaflarski J.P., Thio L.L., Tolchin B., Wilkins A.J., Kasteleijn-Nolst Trenité D., Visually sensitive seizures: an updated review by the Epilepsy Foundation, „Epilepsia”, 2022, No 63(4), p. 739-768;
  • 11. Frank L., Kennedy R.S., McCauley M.E., Root R.W., Kellogg R.S., Bittner A.C., Simulator sickness: sensorimotor disturbances induced in flight simulators, Simulator Sickness: Sensorimotor Disturbances Induced in Flight Simulators, “The Image H Conference”, 1983, p. 417-426;
  • 12. Growth C., Castillo S., Tauscher J.P., Omnidirectional galvanic vestibular stimulation in virtual reality, „IEEE Transactions on Visualization and Computer Graphics”, 2022, No 28(5), p. 2234-2244;
  • 13. Haar R.T., Virtual Reality in the Military: Present and Future, „Twente Student Conference IT” 2005, s. 1-7;
  • 14. Hirzle T., Cordts M., Rukizo E., Gugenheimer J., Bulling A., A Critical Assessment of the Use of SSQ as a Measure of General Discomfort in VR Head-Mounted Displays, “CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems”, 2021, p. 1-14;
  • 15. https://polska-zbrojna.pl/home/articleinmagazineshow/22163?t=Wirtualne-pole-walki (access: 06.04.2023);
  • 16. Kennedy R.S., Lane N., Berbaum K., Lilienthal M., Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness, „The International Journal of Aviation Psychology”, 1993, No 3(3), p. 203-220;
  • 17. Kolasinski E.M., Goldberg S.L., Miller J.H., Simulator sickness in virtual environments, „Technical Report”, 1995, No. 1027, p. 1-68;
  • 18. Konopacki M.M., Użycie symulatora wirtualnej rzeczywistości w procesie szkolenia obsługi wyrzutni rakiet, praca magisterska, WAT, Warszawa 2023.
  • 19. LaViola Jr. J.J., A discussion of cybersickness in virtual environments, „SIGCH Bulletin”, 2000, No 32(1), p. 47-56;
  • 20. Lele A., Virtual Reality and its Military Utility, „Journal of Ambient Intelligence and Humanized Computing", 2013, No 4, p. 17-26;
  • 21. Liu C. T., Uang S. T., A study of sickness induced within a 3D virtual store and combated with fuzzy control in the elderly, “2012 9th International Conference on Fuzzy Systems and Knowledge Discovery”, 2012, p. 334-338;
  • 22. Lo W. T., So R. H.,Cybersickness in the presence of scene rotational movements along different axes, "Applied Ergonomics", 2001, No 32(1), p. 1–14;
  • 23. McLellan H., The Handbook of Research for Educational Communications and Technology, wyd. Simon & Schuster Macmillan, 2001, s. 1196-1212;
  • 24. Milewski S., Kobierski J., Chmieliński M., Trenażery morskich zestawów rakietowo-artyleryjskich, „Zeszyty Naukowe Akademii Marynarki Wojennej”, 2012, No 57, p. 33-53;
  • 25. Michalski D, Radomyski A., Counting the Uncountable. Saf & Def. 2020;6(2), p. 100-12: https://doi.org/10.37105/sd.91
  • 26. Pantelidis V.S., Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality, „Themes in Science and Technology Education”, 2010, No 2, s. 59-70;
  • 27. Porcino T., Trevisan D., Clua E., A cybersickness review: causes, strategies, and classification methods, „Journal on Interactive Systems”, 2021, No 12(1), p. 269–282;
  • 28. Porcino T., Trevisan D., Reilly D., Clua E., A guideline proposal for minimizing cybersickness in VR-based serious games and applications, „2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH)”, 2022, p. 1-8;
  • 29. Reason J.T., Brand J.J., Motion Sickness, wyd. Academic Press, 1975, p. 1-277;
  • 30. Riccio G.E., Stoffregen T.A., An ecological theory of motion sickness and postural instability, „Ecological Psychology” 1991, No 3(3), p. 195-240;
  • 31. Saposnik G., Cohen L.G., Mamdani M., Pooyania S., Ploughman M., Cheung D., et al., Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial, „Lancet Neurol”, 2016, No 15, p. 1019–1027;
  • 32. So R. H. Y., Lo W. T., Cybersickness: An experimental study to isolate the effects of rotational scene oscillations. "Proceedings of the IEEE Virtual Reality", 1999, p. 237–241;
  • 33. Sra M., Jain A., Maes P., Adding proprioceptive feedback to virtual reality experiences using galvanic vestibular stimulation, „CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems”, 2019, p. 1-14;
  • 34. Stanney K. M., Hale K. S., Nahmens, I., Kennedy R. S., What to Expect from Immersive Virtual Environment Exposure: Influences of Gender, “Body Mass Index, and Past Experience. Human Factors”, 2003, No 45(3), p. 504–520;
  • 35. Stanney K. M., Kennedy R. S., Drexler J. M., Cybersickness is Not Simulator Sickness, “Proceedings of the Human Factors and Ergonomics Society Annual Meeting”, 1997, No 41(2), p. 1138-1142;
  • 36. Tashakkori A., Teddlie C., Mixed methodology: Combining qualitative and quantitative approaches, wyd. Sage, 1998, p. 1-190;
  • 37. Treisman M., Motion sickness: an evolutionary hypothesis, „Science” 1977, No. 197, p. 493-495;
  • 38. www.wojsko-polskie.pl/wat/articles/nauka-i-technologia-4/wirtualna-rzeczywistosc-realne-korzysci/pdf/ (access: 04.04.2023);
  • 39. Yamamoto G.T., Altun D., Virtual Reality technology in the future of military training,,”Person Jurnal of Social Sciences & Humanities”, 2021, No 6 (13), p. 79-93;
  • 40. Youngblut C., Educational Uses of Virtual Reality Technology, wyd. Institute for Defense Analyses, 1998, p. 13-29;
  • 41. Ząbek D, Grzebielec A, Cmok L, Hribar Boštjančič P, Mertelj A. Experimental analysis of the stability of ferrofluids based on Iron Oxide powder. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych 30 czerwca 2021;(2), p. 1-6. DOI: https://doi.org/10.37105/iboa.108
  • 42. Časar, Josef, Farlík, Jan. The Possibilities and Usage of Missile Path Mathematical Modelling for the Utilization in Future Autonomous Air Defense Systems Simulators. In: Mazal J., Fagiolini A., Vasik P. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Cham, Switzerland: Springer, 2020, roč. 11995 LNCS, č. LNCS 11995, p. 253-261. ISSN 0302-9743. ISBN 978-3-030-43890-6
  • 43. Časar, Josef, Corona, Fabio, Biagini, Marco. Operational Scenario Modelling Supporting Unmanned Autonomous Systems Concept Development. In: Modelling and Simulation for Autonomous Systems. Cham, Švýcarsko: Springer International Publishing AG, 2018, p. 253-267. ISSN 0302-9743. ISBN 978-3-319-76072-8.
  • 44. Štefek, Alexandr, Časar, Josef, Starý, Vadim. Flight route generator for simulation-supported wargaming. In: Dusan Maga, Jiri Hajek. Proceedings of the 2020 19th International Conference on Mechatronics–Mechatronika (ME). Praha: Institute of Electrical and Electronics Engineers Inc., 2020, p. 9286646. ISBN 978-1-7281-5602-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-760e00af-3ed6-4253-b692-84da25fb8398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.