PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MgO activated ground granulated blast furnace slag (GGBFS) is a form of alkali-activated composite, which is successfully used as a binder in the stabilization of highly sulfidic mine tailings. The aim of this study was to compare alkali activated composite (AAC) and ordinary Portland cement (PC) as stabilization agents, as well as their efficiency to stabilize sulfidic tailings and the results of three different diffusion and leaching methods. The Life Cycle Assessment (LCA) method was used to compare the environmental impacts of the binders. The lab-scale program covered hydraulic conductivity, compression strength, and freeze-thaw resistance tests of the stabilized tailings. The results indicate that the hydraulic conductivity (6.08 · 10-9 m/s) and compressive strength (11.5 MPa at 28 days) of AAC were better in comparison, if the corresponding amount of PC (2.04 · 10-8 m/s and 10.3 MPa at 28 days) was used. LCA shows clear ecological benefits when using AAC instead of PC in terms of lower global warming potential. Diffusion and leaching tests indicated better immobilization efficiency of AAC than PC concerning As, Cr, Cu, Ni, Se, Zn, and especially Mo. In comparison with plain tailings, AAC stabilization reduced leaching of As, Cr, Cu, Mo, Ni, Pb, Se, Zn, Cl, and SO4 better than PC.
Rocznik
Strony
115--126
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Kajaani University of Applied Sciences, P.O.Box 52, FI-87101, Kajaani, Finland
autor
  • Kajaani University of Applied Sciences/Solid Liner Ltd, P.O.Box 52, FI-87101, Kajaani, Finland
autor
  • University of Oulu, P.O. BOX 8000, FI-90014, University of Oulu, Finland
Bibliografia
  • 1. Al-Tabbaa, A., Barker, P., & Evans, C. W. (2011). Soil mix technology for land remediation: Recent innovations. Proceedings of the Institution of Civil Engineers - Ground Improvement, 164(3), 127-137. https://doi.org/10.1680/grim.2011.164.3.127.
  • 2. Azam, S., & Li, Q. (2010). Tailings dam failures: A review of the last one hundred years. Geotechnical News, 28(4), 50-53.
  • 3. Bruce, D. A. (2001). Practitioner's guide to the deep mixing method. Proceedings of the Institution of Civil Engineers - Ground Improvement, 5(3), 95-100. https://doi.org/10.1680/grim.2001.5.3.95.
  • 4. Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., & Deveci, H. (2012). Utilisation of alkaliactivated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Minerals Engineering, 30, 33-43. https://doi.org/10.1016/j. mineng.2012.01.009.
  • 5. Desogus, P., Manca, P. P., Orru, G., & Zucca, A. (2013). Stabilization-solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate. Minerals Engineering, 45, 47-54. https://doi.org/10.1016/j.mineng.2013.01.003.
  • 6. Edraki, M., Baumgart, T., Manlapig, E., Bradshaw, D., Franks, M., & Moran, C. J. (2014). Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. Journal of Cleaner Production, 84, 411-420. https://doi.org/10.1016/j.jclepro.2014.04.079.
  • 7. Environment Agency (2006). Guidance for waste destined for disposals in landfills, version 2, interpretation of the waste acceptance requirements of the landfill (England and Wales) regulations (as amended). Bristol: Environment Agency.
  • 8. Garcia, M. A., Chimenos, J. M., Fernandez, A. I., Miralles, L., Segarra, M., & Espiell, F. (2004). Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere, 56(5), 481-491. https://doi.org/10.1016/j.chemosphere.2004.04.005.
  • 9. Gineys, N., Aouad, G., & Damidot, D. (2010). Managing trace elements in Portland cement - Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cement and Concrete Composites, 32(8), 563-570. https://doi.org/10.1016/j.cemconcomp.2010.06.002.
  • 10. Gu, K., Jin, F., Al-Tabbaa, A., Shi, B., & Liu, J. (2014). Mechanical and hydration properties of ground granulated blast furnace slag pastes activated with MgO-CaO mixtures. Construction and Building Materials, 69, 101-108. https://doi.org/10.1016/j.conbuildmat.2014.07.032.
  • 11. Gu, K., Jin, F., Al-Tabbaa, A., Shi, B., Liu, C., & Gao, L. (2015). Incorporation of reactive magnesia and quicklime in sustainable binders for soil stabilization. Engineering Geology, 195, 53-62. https://doi.org/10.1016/j.enggeo.2015.05.025.
  • 12. Jin, F. (2014). Characterisation and performance of reactive MgO-based cements (PhD thesis) UK: University of Cambridge.
  • 13. Jin, F., Abdollahzadeh, A., & Al-Tabbaa, A. (2013). Effect of different MgO on the hydration of MgO-activated granulated ground blast furnace slag paste. Proceedings of 3rd International Conference on Sustainable Construction Materials and Technologies. Japan: Kyoto Research Park, Kyoto.
  • 14. Jin, F., & Al-Tabbaa, A. (2014). Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere, 117, 285-294. https://doi.org/10.1016/j.chemosphere.2014.07.027.
  • 15. Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8-16. https://doi.org/10.1016/j.cemconcomp.2014.10.007.
  • 16. Jin, F., Wang, F., & Al-Tabbaa, A. (2016). Three-year performance of in-situ solidified/ stabilised soil using novel MgO-bearing binders. Chemosphere, 144, 681-688. https://doi.org/10.1016/j.chemosphere.2015.09.046.
  • 17. Kogbara, R. B., Al-Tabbaa, A., & Stegemann, J. A. (2014). Comparisons of operating envelopes for contaminated soil stabilised/solidified with different cementitious binders. Environmental Science and Pollution Research, 21(5), 3395-3414. https://doi. org/10.1007/s11356-013-2276-7.
  • 18. Lange, L. C., Hills, C. D., & Poole, A. B. (1995). Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes. Environmental Science and Technology, 30(1), 25-30. https://pubs.acs.org/doi/abs/10.1021/es940702m.
  • 19. Mäkelä, E., Wahlström, M., Pihlajaniemi, M., & Mroueh, U.-M. (1998). Kivihiilivoimaloiden rikinpoistotuotteet ja lentotuhka maarakentamisessa. Jatkotutkimus.VTT Tiedotteita 1952, 1-64. Espoo: VTT. (in Finnish). Retrieved April 4th, 2018Month Day, Year from http://www.inf.vtt.fi/pdf/.
  • 20. Manjunatha, L. S., & Sunil, B. M. (2013). Stabilization/solidification of iron ore mine tailings using cement, lime and fly ash. International Journal of Renewable Energy Technology, 02(12), 625-636. https://doi.org/10.15623/ijret.2013.0212107.
  • 21. Mudd, G. M., & Boger, D. V. (2013). The ever growing case for paste and thickened tailings - towards more sustainable mine waste management. The AusIMM Bulletin, 2, 56-59.
  • 22. Nehdi, M., & Mindess, S. (1999). A quantitative approach to predicting the performance of blendedcements. Concrete Science and Engineering, 1, 205-214.
  • 23. Nehdi, M., & Tariq, A. (2007). Stabilization of sulphidic mine tailings for prevention of metal release and acid drainage using cementitious materials: A review. Journal of Environmental Engineering and Science, 6(4), 423-435. https://doi.org/10.1139/s06-060.
  • 24. Obuzor, G. N., Kinuthia, J. M., & Robinson, R. B. (2012). Soil stabilisation with limeactivated- GGBS - a mitigation to flooding effects on road structural layers/embankments constructed on floodplains. Engineering Geology, 151, 112-119. https://doi.org/10.1016/j.enggeo.2012.09.010.
  • 25. Sarkkinen, M., Tuomikoski, S., Kujala, K., Kemppainen, K., & Gehör, S. (2017). Replacement of Portland cement in Portland blast-furnace slag cement for coldagglomerated briquetting. Proceedings of the fifth international slag valorisation symposium (pp. 1-4). Leuven: Faculteit Ingenieurswetenschappen KU Leuven.
  • 26. Seco, A., Miqueleiz, L., Prieto, E., Marcelino, S., Garcia, B., & Urmeneta, P. (2017). Sulfate soils stabilization with magnesium-based binders. Applied Clay Science, 135, 457-464. https://doi.org/10.1016/j.clay.2016.10.033.
  • 27. Tariq, A., & Yanful, E. K. (2013). A review of binders used in cemented paste tailings for underground and surface disposal practices. Journal of Environmental Management, 131, 138-149. https://doi.org/10.1016/j.jenvman.2013.09.039.
  • 28. Tresintsi, S., Simeonidis, K., Katsikini, M., Paloura, E. C., Bantsis, G., & Mitrakas, M. (2014). A novel approach for arsenic adsorbents regeneration using MgO. Journal of Hazardous Materials, 265, 217-225. https://doi.org/10.1016/j.jhazmat.2013.12.003.
  • 29. Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current state of fine mineral tailings treatment: A critical review on theory and practice. Minerals Engineering, 58, 113-131. https://doi.org/10.1016/j.mineng.2014.01.018.
  • 30. Xie, X., Tian, W., Wang, Y., & Zhan, G. X. (2009). The safety analysis of current situation and management countermeasure on tailing reservoir in China. Journal of Safety Science and Technology, 5(2), 5-9.
  • 31. Yi, Y., Gu, L., Liu, S., & Jin, F. (2016a). Magnesia reactivity on activating efficacy for ground granulated blastfurnace slag for soft clay stabilization. Applied Clay Science, 126, 57-62. https://doi.org/10.1016/j.clay.2016.02.033.
  • 32. Yi, Y., Li, C., Liu, S. Y., & Al-Tabbaa, A. (2014a). Resistance of MgO-GGBS and CS-GGBS stabilised marine soft clays to sodium sulfate attack. Géotechnique, 64(8), 673-679. https://doi.org/10.1680/geot.14.T.012.
  • 33. Yi, Y., Liska, M., & Al-Tabbaa, A. (2014b). Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC. Journal of Materials in Civil Engineering, 26(2), 267-274.
  • 34. Yi, Y., Liska, M., Jin, F., & Al-Tabbaa, A. (2016b). Mechanism of reactive magnesia - ground granulated blastfurnace slag (GGBS) soil stabilization. Canadian Geotechnical Journal, 53(5), 773-782. https://doi.org/10.1139/cgj-2015-0183.
  • 35. Yip, C. K., Lukey, G. C., & van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10. 042.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-760c4a23-497e-4632-83d1-22e3ce516d73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.