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For studying mechanism of sediment transport in river flows, open chan-
nel flow is a prototype. Flow has always three components of velocity for all types
of channel geometry and for a time independent uniform flow along streamwise or
main flow direction, all the components of velocity are functions of lateral and ver-
tical coordinates. The present study investigates the two dimensional distribution of
streamwise (or longitudinal) velocity starting from the Reynolds averaged Navier–
Stokes equation for a turbulent open channel flow which is steady and uniform along
the main flow direction. Secondary flows both along the vertically upward direction
and along the lateral direction are considered which are also taken as functions of lat-
eral and vertical coordinates. Inclusion of the secondary current brings the effect of
dip phenomenon in the model. The resulting second order partial differential equation
is solved numerically. The model is validated for all the cross-sectional, transverse and
centreline velocity distribution by comparing with existing relevant set of experimen-
tal data and also with an existing model. Comparison results show good agreement
with data as well as with the previous model proving the efficiency of the model. It is
found that the transverse velocity distribution depends on the formation of circular
vortex in the cross-sectional plane and becomes periodic as the number of circular
vortex increases for increasing aspect ratios.

Key words: velocity distribution, open channel flow, turbulent flow, RANS equa-
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1. Introduction

In the study of river hydraulics or any fluvial system, understanding
the turbulent velocity distribution is one of the key components. Researchers
worked since decades to develop different models on velocity distribution in an
open channel flow considering different aspects of turbulence. But the fluctuating
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behavior of turbulence is so unforeseeable that it never allowed any model to be
universally acceptable. So the research on velocity in an open channel turbulent
flow can never come to an end.

Usually in open channel turbulent flows, velocity distribution means the ver-
tical distribution of streamwise time averaged velocity of the flow in the central
section of an open channel where the side-wall effects are negligible. Pioneer in
this field were von Karman [1] and Prandtl [2] whose law of wall is till now
applied in the study of turbulence. After that, numerous models have been devel-
oped by several researchers [3–12] incorporating different features of turbulence
in their models. All these models mainly focussed into one dimensional distri-
bution of longitudinal velocity. One of the important aspects of turbulence is
secondary current which is present in all kinds of flow irrespective of the channel
geometry [13] and it helps to understand the flow as well as the variation of bed
texture and bed topography. Several researches can be found in literature that
studied structure and mechanism of secondary flow in an open channel. Wang
and Cheng [14] investigated experimentally as well as analytically, the time-
mean characteristics of cellular secondary flow that is generated by longitudinal
bedforms. According to Prandtl [2], two categories of secondary current can
be identified in fluid flow. The first kind or skew-induced streamwise vortcity is
originated from the mean flow and commonly treated by the researchers. The
second kind secondary current is generated by turbulence which is related to
the formation of sand ridges and is typical in straight and non-circular chan-
nels [15]. Yang et al. [16] studied in details the mechanism for initiation and
retention of Prandtl’s second kind secondary current. They revealed that sec-
ondary currents originate from the boundary region and the lateral variation of
streamwise velocity is the cause of generation. Recently Duda et al. [17] have
experimentally observed the second kind secondary flow in a corner of a channel
of the square cross-section by using Stereo Particle Image Velocimetry. They
studied the generation and pattern of vortices for different Reynolds numbers.
For narrow open channels where the aspect ratio (ratio of channel width to flow
depth) is less then 5 [18], the influence of secondary current is prominent that
brings the maximum streamwise velocity below the free surface, a phenomenon
which is commonly known as the dip-phenomenon. The dip-phenomenon was
reported quite a long time ago for open channels and rivers [19–21] as well as
for laboratory tests [22, 23]. Guo and Julien [10, 24] and Absi [11] devel-
oped a number of velocity models which are able to predict a dip-phenomenon.
Kundu and Ghoshal [12] developed a modified velocity model known as the
total-dip-modified-log-wake law which was fully analytical. Guo [25] revisited
smooth rectangular open channel flow in terms of the velocity dip-position, the
centreline and the cross-sectional velocity distributions. He derived the dip posi-
tion by Yang’s linear shear stress distribution and showed that centreline velocity
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distribution and cross-sectional velocity distribution can be described by Guo
and Julien’s MLW law [10, 26].

All the above mentioned models mostly focussed on one dimensional distri-
bution of longitudinal velocity in comparison to which two dimensional velocity
distribution studies are quite less. Sarma et. al. [4] developed a two dimen-
sional distribution formula for longitudinal velocity but the formula was not
able to address the dip-phenomenon. Lu [27] derived two dimensional veloc-
ity (longitidinal) expression for a steady uniform flow through open channels
which was applicable in Yangtze river though the expression needed modifi-
cation for application to rivers with narrow-deep cross-sections. Bonakdari
et. al. [28] proposed vertical shear stress distribution along a centreline consid-
ering secondary current effects and from that, developed an analytical solution
for velocity with parabolic eddy viscosity. Guo [25] developed modified log wake
law for cross-sectional velocity distribution empirically. Though the model of
Guo [25] shows a dip effect, but effects of transverse and vertical components
of velocity are not included in this model. He compared his model for center-
line velocity distribution with the data of Coleman [6], Lyn [29] and Muste
and Patel [30] and for cross-sectional velocity distribution, with the data of
Tominaga et. al. [31] who measured the three dimensional turbulent structure
in straight open channels including both primary velocity and secondary cur-
rent. Recently, Lu et. al. [32] have derived the longitudinal velocity distribution
formula analytically along vertical and transverse directions with the sidewall
effects starting from the Reynolds equation of a turbulent flow and validated
their model with both laboratory and channel data. Though the agreement was
satisfactory, but they excluded some terms (explained later) in the governing
equation without any proper explanation.

From the aforementioned literature review it can be observed that previous
studies mostly were associated with one dimensional distribution of the stream-
wise velocity component that depends on the vertical coordinate only. Very few
researchers studied two dimensional distribution of streamwise velocity, but ei-
ther not including influence of secondary current resulting into dip-phenomenon
or not taking into account the transverse and vertical components of velocity
or neglecting some relevant terms from the governing equation. Literature lacks
in a generalized model that originates from traditional mass and momentum
equations and studies the streamwise velocity considering velocity components
in all three directions that are functions of lateral and vertical coordinates. So
the present study devotes to develop a model starting from the Reynolds aver-
aged Navier–Stokes (RANS) equation for streamwise velocity for a steady and
uniform flow along the main flow direction and which includes the effect of both
transverse and vertical velocities resulting into a solution containing the dip-
phenomenon, all the velocity components being functions of lateral and vertical
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coordinates. This work can be considered as an extension of Lu et al. [32] work
who started from RANS equation, but not considering few important terms, may
be for the sake of providing an analytical solution. The present work considers
those terms and provides a numerical solution to the problem.

In brief, the main objectives of the present study are (i) to investigate the
two dimensional longitudinal velocity distribution in a steady turbulent flow
uniform along the main flow direction, through straight open channels starting
from RANS equation with all three velocity components; (ii) to apply a numerical
method for solving the partial differential equation arising in such flows; (iii) to
validate the obtained solution with relevant experimental data containing the dip
phenomenon; and (iv) to demonstrate the solution with other existing model to
investigate transverse velocity distributions.

2. Derivation of the 2D velocity distribution model

We consider a steady, uniform (along longitudinal direction) turbulent flow
through a straight rectangular open channel with the width 2B and the energy
slope S. In the three dimensional cartesian co-ordinate system, x, y and z indicate
the main flow, lateral and vertical directions respectively as shown in Fig. 1 and
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Fig. 1. Schematic diagram of the two dimensional velocity distributions along vertical (z)
(figure in the top) and transverse (y) (figure in the bottom) directions.
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the origin O is considered at the bottom of the center line. Let u(y, z), v(y, z) and
w(y, z) denote the mean flow velocities along streamwise (or longitudinal), lateral
(or transverse) and vertical directions respectively. Then the mass conservation
and x-directional momentum equations are expressed after taking the Reynolds
averaging (RANS equation) as

∂v

∂y
+
∂w

∂z
= 0,(2.1)

∂u

∂y
+ w

∂u

∂z
= gx + ν

(
∂2u

∂y2
+
∂2u

∂z2

)
+

[
∂

∂y
(−u′v′) +

∂

∂z
(−u′w′)

]
,(2.2)

where gx = g sin θ = gS (say) denotes the component of a gravitational force
along the main flow direction, θ is the channel slope, ν denotes fluid kinematic
viscosity, u′, v′ and w′ denote turbulent fluctuating components of corresponding
velocities and overbars denote the time averaging. Equation (2.2) can be further
expressed as

(2.3) v
∂u

∂y
+ w

∂u

∂z
= gS +

1

ρ

∂

∂y
(τ totxy ) +

1

ρ

∂

∂z
(τ totxz ),

where ρ is fluid density, τ totxy and τ totxz are components of total shear stresses which
are expressed as follows

(2.4) τ totxy = µ
∂u

∂y
+ (−ρu′v′) = τνxy + τxy

and

(2.5) τ totxz = µ
∂u

∂z
+ (−ρu′w′) = τνxz + τxz.

Here τνxy and τνxy are viscous shear stresses and τxy and τxz are Reynolds shear
stresses. In open-channel flows, viscous shear stresses are dominant in the thin
viscous sublayer and above this layer, in the main flow region, Reynolds shear
stresses dominate. Therefore Eqs. (2.4) and (2.5) are approximated by ignoring
the viscous terms and then using the Boussinesq hypothesis [3] and the uniform
flow condition, we can write

(2.6) τ totxy ≈ −ρu′v′ = τxy = ρνy

(
∂u

∂y
+
∂v

∂x

)
= ρνy

∂u

∂y

and

(2.7) τ totxz ≈ −ρu′w′ = τxz = ρνz

(
∂u

∂z
+
∂w

∂x

)
= ρνz

∂u

∂z
,
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where νy and νz are eddy viscosities along lateral and vertical directions respec-
tively. Substituting Eqs. (2.6) and (2.7) into Eq. (2.3), the governing equation
for 2D flow is expressed as

(2.8)
∂

∂y

(
νy
∂u

∂y

)
+

∂

∂z

(
νz
∂u

∂z

)
− v∂u

∂y
− w∂u

∂z
= −gS.

Secondary current of Prandtl’s second kind is generated by the non-uniformities
of the flow near the walls induced by the anisotropic turbulence [33]. These sec-
ondary currents of the second kind are weak and have magnitude of the maximum
velocity less than 5% of the mean streamwise flow velocity [34]. Prandtl [35]
postulated that the distribution of longitudinal mean velocity in a cross-sectional
plane changes due to the presence of secondary flows. Therefore the flow with
effects of secondary current can be assumed as a flow with the primary flow
superimposed with the weak secondary flow and is a result of perturbation to
the primary flow due to the existence of secondary currents [36]. As a result Lu
et. al. [32] considered v(y, z)/u(y, z) and w(y, z)/u(y, z) to be of small order and
neglected the last two product terms in the LHS of Eq. (2.8) assuming linear
stability. But since the cross-sectional distribution of primary mean flow velocity
is subjected to change with the presence and structure of secondary velocities v
and w [14], these terms must be taken into account and therefore in this study
we consider Eq. (2.8) as the governing equation for 2D velocity distribution.

The eddy viscosity νz along vertical direction is modeled by the parabolic
profile after assuming the linear law of fluid shear stress and the logarithmic law
of streamwise mean velocity u as [37, 38]

(2.9) νz = κu∗bz

(
1− z

H

)
,

where κ is the von Karman coefficient, u∗b =
√
τb/ρ is the local bed shear ve-

locity i.e. the shear velocity along lateral/transverse direction in which τb is the
bed shear stress and H is the flow depth. Tominaga et al. [31] experimentally
showed that in narrow open channels, free surface and bottom vortices/eddies
exist and they transfer low momentum water from side walls to the central sec-
tion of open channels that causes the dip-phenomena. Later Yang et al. [9] and
Guo [25] modeled the secondary current effect in the Reynolds shear stress dis-
tribution using the combination of two shear stresses τb and τ1 where τ1 is the
‘apparent’ shear stress at the free surface. It acts like a shear stress but it signifies
the momentum transfer by secondary current near the free surface only. Guo [25]
showed after analyzing data of Tominaga et al. [31] that dip-phenomenon oc-
curs due to the presence of longitudinal water surface eddies which increase the
maximum velocity through the wake function and for narrow open channels, the
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wake function [3] is scaled by another shear velocity u∗1 as proposed by Guo [25]
and along the center line, the modified log-wake (MLW)-law is finally scaled by
u∗b + u∗1 [25]. Since the distribution of mean streamwise velocity also changes
with lateral direction, u∗b + u∗1 cannot be used for scaling the velocity u(y, z).
Wang and Cheng [36] suggested that if ũ∗(=

√
ghS) denotes the average shear

velocity at the central section, then at different sections of channel, u∗b changes
along the lateral direction as

(2.10)
u∗b
ũ∗

=

[
1 + 0.18 cos

(
πy

H

)]1/2
.

Here it can be observed from Eq. (2.10) that the change of u∗b along lateral
direction is due to the presence of the cosine term on the right side of this equa-
tion and therefore the spatially averaged shear velocity u∗ along the transverse
direction can be defined as [36]

u∗ =
1

2B

B∫
−B

ũ∗

[
1 + 0.18 cos

(
πy

H

)]1/2
dy(2.11)

=
ũ∗
Ar/2

Ar/2∫
0

[1 + 0.18 cos(πt)]1/2 dt,

where Ar = 2B
H is the aspect ratio. Since u∗ gives the average value, therefore

it is more reasonable to use u∗ for scaling the velocity components. Therefore
using Eq. (2.11), the eddy viscosity along the vertical direction is expressed as

(2.12) νz = κλu∗z

(
1− z

H

)
,

where λ = Ar/[2
∫ Ar/2
0 [1 + 0.18 cos(πt)]1/2 dt] is a constant. It is to be noted

that when bed effects are absent, the integrand on the right side of Eq. (2.11),
is simply 1 and one gets u∗ = ũ∗ =

√
ghS.

As such no general empirical model exists in literature for the eddy viscosity
model along the lateral direction. It is general practice in river engineering to ap-
proximate it by its average value and such a model was proposed by Ikeda [39].
Following [18, 39], in the absence of bed roughness or bed elevation, νy along the
lateral direction is approximated by the depth-averaged eddy viscosity as

(2.13) νy =
κ

6
u∗H,

where u∗ is the spatially averaged shear velocity in the transverse direction which
is already defined.



182 S. Mohan et al.

(a)

 

 

Secondary 

current 

z 

H 

2B 

Velocity dip 

position 

O 

free-surface 

vortex 

bottom  

vortex 

y 

(b)

Rough bed surface Smooth bed surface 

z 

x y 

 
w<0 w>0 w ≈ 0 

Fig. 2. Schematic pattern of secondary current. (a) In narrow open channel according
to [44]; (b) In wide open channel with alternate smooth and rough bed strips [45].

The structure of secondary currents occuring in narrow and wide open chan-
nels are different (see Fig. 2). In narrow open channels, due to the sidewall effects,
free surface vortex and bottom vortex are generated and for wide open channels,
free surface vortex gradually disappears. The dip-phenomenon occurs due to the
presence of the free surface vortex [25]. In the free surface vortex, the secondary
flow velocity w(y, z) is acting along the vertically downward direction at the cen-
terline and along vertically upward direction near the sidewall. Therefore such
flow velocity can be modeled from [14] as

(2.14) w(y, z) = −wmax sin

(
π
z

H

)
cos

(
π
y

H

)
,

where wmax is the maximum flow velocity of w. Substituting Eq. (2.14) into
Eq. (2.1) and integrating, the lateral secondary flow velocity is obtained as [14]

(2.15) v(y, z) = wmax cos

(
π
z

H

)
sin

(
π
y

H

)
.

Finally, substituting Eq. (2.13) and Eqs. (2.12)–(2.15) into Eq. (2.8) and
using the following dimensionless variables

(2.16) z̃ =
z

H
, ỹ =

y

H
, ũ =

u

u∗
, ṽ =

v

u∗
and w̃ =

w

u∗
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the governing equation is rewritten as

(2.17)
∂2ũ

∂ỹ2
+6λz̃(1−z̃)∂

2ũ

∂z̃2
−
(

6

κ

)
ṽ
∂ũ

∂ỹ
+

[
6λ(1−2z̃)−

(
6

κ

)
w̃

]
∂ũ

∂z̃
+

6gSH

κu2∗
= 0.

The distribution of primary mean flow velocity ũ(ỹ, z̃) in the yz cross-sectional
plane is governed by Eq. (2.17). Here secondary velocities ṽ and w̃ are given in
Eqs. (2.14) and (2.15), respectively. It can be observed that the governing equa-
tion is an elliptic partial differential equation. To find the solution of Eq. (2.17),
apart from boundary conditions, some more conditions are required which are
conditions at dip position, at centerline and at a wall. All the conditions can be
written together as

ũ(ỹ, z̃)
∣∣
z̃=0

= ũa, ũ(ỹ, z̃)
∣∣
z̃=1

= ũs,(2.18)
∂ũ

∂z̃

∣∣
z̃=z̃d

= 0,(2.19)

∂ũ

∂ỹ

∣∣
ỹ=0

= 0,(2.20)

and

(2.21) ũ(ỹ, z̃)
∣∣
ỹ=|B/H| = ũw,

where ũa(= ua/u∗) denotes the primary mean flow velocity at bottom (it is
generally taken as zero or very small), ũs(= us/u∗), denotes the primary mean
flow velocity at free surface, z̃d = zd/H is the dimensionless height of velocity
dip-position from channel bed, ũw = uw/u∗ is the mean sidewall flow velocity.
In Eq. (2.21), modulus sign is given to indicate the both sidewall positions from
centreline. Equation (2.17) along with the conditions Eqs. (2.18)–(2.21) is solved
numerically using the finite difference approximation. As this method is well
established and is quite often used to solve ordinary/partial differential equation,
it is not described in the main text of the manuscript. It has been given in the
appendix for those readers who are not familiar with this method.

3. Validation of the model

In this section, we have validated our obtained numerical solution using the
finite difference numerical scheme with the existing analytical and numerical
solutions as well as experimental data under some specific conditions. To obtain
the numerical solution of a problem, discretization of computational domain is
an important aspect as the accuracy of the numerical solution depends on the
grid size. The best way to obtain the grid converged solution is by plotting the
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solution with more and more number of grid sizes until one finds that there is no
significant difference in the solutions. For that purpose, in the present work, the
computational domain is divided into N number of equally spaced grid points
with the grid size ∆ỹ =

Ly
N−1 in ỹ-direction andM number of equally spaced grid

points with the grid size ∆z̃ = Lz
M−1 in z̃-direction. Ly and Lz are the lengths

of the domain in ỹ and z̃ directions, respectively. More detailed explanation is
given in appendix.
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Fig. 3. Sensitivity of cross-sectional velocity distribution for different grid size
(a) M = N = 90, (b) M = N = 110, (c) M = N = 140 and (d) M = N = 180. The contour
lines with cross symbol show the benchmark solution corresponding to 200 grid points each

for M and N .
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Fig. 4. Sensitivity of vertical and transverse velocity distributions with different grid sizes
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To obtain the converged solution over different grid sizes, we have plotted
cross-sectional, vertical and transverse velocity profiles in Figs. 3 and 4 respec-
tively for different number of grid points. In case of the cross-sectional velocity,
we have considered different grids sized in both the directions. In Fig. 3, the
cross-sectional solutions are plotted for four different choices of grid sizes. From
the plots in Fig. 3, it can be observed that if one considers grid points greater
than 180 in both directions, the grid converged solution is obtained. Here, the
solution with 200 grid points in both directions is considered as the benchmark
solution and plotted together with other grid point solutions in Fig. 3 to show the
convergence. It is found that after a minimum number grid point of 180 in both
directions, the solution becomes less sensitive and does not increase significantly.
Similarly in Fig. 4, the vertical and transverse variations with different grid sizes
are plotted. From the figures it can be observed that after 200 grid points vertical
velocity converges and after 120 grid points the transverse velocity converges.
This analysis shows the stability of the numerical solutions.

3.1. Cross-sectional velocity distribution

To test the validity of the proposed numerical solution of Eq. (2.17), exper-
imental data of Tominaga et. al. [31] has been used. They measured the 3D
turbulent structure with hot-film anemometers in three straight open channels,
including a rectangular flume 12.5 m long and 40 cm× 40 cm cross-section. The
bed-wall was made with an iron plate and painted for smoothness and a sidewall
was made up with glass materials. The fully developed, uniform turbulent flow
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was established at the test section 7.5 m downstream from the entrance of a chan-
nel by adjusting the bed slope and the movable weir at the channel end. In this
group of experiments, the channel width 2B was kept fixed and the flow depth
H was changed. Three flow depth cases were considered with depths H = 5 cm,
10.15 cm and 19.90 cm. In this experiment, the maximum value of secondary
current is about 1.5% of the maximum value of the streamwise mean flow ve-
locity umax. The results include the measured data for the primary mean flow
velocity, secondary currents and turbulence intensities. Other experimental con-
ditions are given in Table 1. In Fig. 5, primary mean velocity distribution along
the yz cross-sectional plane is plotted corresponding to three different cases. In
the left column of the figure, the cross-sectional mean velocity for the left half
cross-section is plotted from the experimental data of Tominaga et. al. [31] and
the calculated cross-sectional mean velocity from the numerical solution for the
right half cross-section are plotted in the right column. In the computed solu-
tion, the value of the local bed shear velocity u∗b is calculated from Eq. (2.10)
and values of other parameters are taken from experiments of [31]. It can be
observed from Fig. 5 that the proposed solution provides good agreement with
the experimental measurements.

Table 1. Experimental conditions and values of parameters for experiment of [31].

Flow depth Aspect ratio Bed shear velocity Maximum velocity ũa ũwCases
H [cm] Ar u∗b [cm/s] umax [cm/s] [cm/s] [cm/s]

S1 5.00 8.00 2.14 46.31 5.96 14.16
S2 10.15 3.94 1.17 23.50 8.07 11.96
S3 19.90 2.01 1.64 24.36 4.36 9.96

3.2. Transverse velocity distribution

Similarly, the validity of the numerical solution of Eq. (2.17) to predict the
velocity distribution along the transverse direction at different vertical heights is
also tested. Experimental data of Sarma et. al. [4] for rectangular open channel
is considered here. In [4] they studied the velocity distribution in rectangular
open channels dividing the cross-sectional region into four parts. The exper-
iments were conducted in a straight, horizontal rectangular flume of smooth
walls with length 15.25 m, width 61 cm, and height 30 cm. The experiments
were conducted in two stages. The first stage of experiments were carried out
in 61 cm wide flume and in the second phase, experiments were carried out in
a 30.5 cm wide flume covering the range of the aspect ratio Ar from 1 to 8 in
both the stages. The channel bed was kept very nearly horizontal. They assumed
a parabolic type profile for region 1 which is the inner region of bed and outer
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Fig. 5. Comparison of computed velocity contours from numerical solution (in right column)
with the experimental data from [31] (in left column) as u/umax for (a) Case S3, Ar = 2.01,

(b) Case S2, Ar = 4 and (a) Case S1, Ar = 8.

region of sidewall. The parabolic profile assumed by them can be put as

umax − u
u∗

= Kw

(
1− y

B

)2

,(3.1)

where Kw is the coefficient in the law for the outer region of the sidewall very
close to the bed obtained as 2.4, B is the width of half channel. Figure 6 shows the
validity of the proposed model in predicting the transverse velocity distribution
with the experimental data of [4] for the aspect ratios Ar = 2 and 8 for narrow
and wide open channels, respectively. The model [4] i.e. Eq. (3.1) is also plotted
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in the figure to compare with the proposed model. In Fig. 6a, the dimensionless
transverse velocity u/u∗ is plotted as a function of y/H for the aspect ratio 2
and z/H = 0.1. The values of parameters are taken as ũa = 22, ũw = 5.7, B =
15.25 cm, ũmax = 22.9 m/s, z̃d = 0.59. The parameters are crucial for accurately
predicting the position of the velocity dip and needs appropriate calculation;
[40] compared all available models of dip-position in literature and proposed
a new model using the concept of entropy theory. For the comparison analysis
in this study, the model of [40] is chosen as it gives accurate prediction and
minimum errors. The formula is expressed as

(3.2) z̃d = 0.5 +
1

2L
ln[1 + (eL − 1){1− e−0.07Ar1.18}],

(a) (b)
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Fig. 6. Comparison of calculated transverse velocity distribution in rectangular open
channel with the experimental data and model of [4]: (a) Ar = 2; (b) Ar = 8.

where L = 0.724. Similarly, in Fig. 6b, the dimensionless transverse velocity
u/u∗ is plotted as a function of y/H for the aspect ratio 8 and z/H = 0.04. The
values of parameters are taken as ũa = 23.2, ũw = 0.7, B = 30.5 cm, ũmax =
22.9 m/s, z̃d = 1. From the figures it can be observed that the proposed model
can predict the transverse velocity distribution at different vertical heights for
both narrow and wide rectangular open channels. Also that in case of a narrow
channel, both the models give good agreement through out the channel cross-
section; whereas for a wide open channel, present study slightly deviates from
both the experimental data and the empirical model of [4] near the vertical side-
wall. This deviation can be explained as follows: in natural channels or wide
open channels, the flow structure is three dimensional. Therefore the existence
and the structures of the cellular secondary velocities play significant role on
the distribution of transverse velocities. Generally the second kind of cellular
secondary current appears as counter rotating paired cells and occurs period-
ically along the transverse direction with an approximate period of twice the
height/depth of the flow H as shown in Fig. 2 [14, 16, 41]. In case of narrow
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Fig. 7. Variation of transverse velocity with secondary circulations for different aspect ratios
and alternate bottom surfaces. Left column represents the transverse velocity distribution
and right column represents the circular secondary currents in half cross-sectional plane for

different aspect ratios.

channels where Ar = 2 or B = H only one pair of counter rotating circular cells
exist and as a consequence, the periodicity does not occur. Therefore in Fig. 6a
the proposed solution matches exactly. On the other hand, in case of a wide
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open channel where Ar = 8 or B = 4H, four pairs of cellular secondary cells ex-
ist and the transverse velocity profile becomes periodic. In our present study we
have included the existence of the circular secondary currents to make the model
more appropriate and realistic by considering most appropriate models of sec-
ondary velocities proposed by [14] as trigonometric functions. As a consequence
the numerical results slightly deviates from the experimental data near the wall
boundary. In case of the model of [4], the deviation disappears as they considered
only a parabolic type empirical model for transverse velocity distribution where
a periodicity effect is not present. Apart from this, the result also deviates due
to the existence of the corner bottom vortex near the side wall region.

To discuss the variation of primary velocity along the transverse direction and
deviation of the proposed model near the vertical wall region Fig. 7 is plotted.
In the figure, the transverse velocities are plotted in the left column and the
cross-sectional velocity vectors from Eqs. (2.14) and (2.15) in the right column
for four different choices of aspect ratios 2, 4, 6 and 8. The values of other
parameters are taken from the experiments of [4] and z/H = 0.1. In all the
plots of Fig. 7, the value of y is taken from zero to half of the width B of the
channel. From the figure it can be observed that as an aspect ratio increases, the
transverse velocity changes and behaves like a periodic function. From Fig. 7a,
it can be seen that when the aspect ratio is 2, then B = H and there exists
only one circular vortex in the half cross-sectional plane (since the total width
of pair of counter rotating circular vortex is 2B). Apart from that, single upflow
and downflow zones exist; and maximum and minimum transverse velocities
correspond to downflow and upflow zones respectively. The result of Ar = 2 is
consistent with the experimental observations of [4] and [14]. As the aspect ratio
increases to 4, then B = 2H and thus one pair of circular vortex occurs in the half
cross-sectional plane as observed in Fig. 7 that corresponds to one upflow and
two downflow zones. As a result, the transverse velocity attains one minimum
and two maximum values. In a similar manner, with the increase of the aspect
ratio the distribution of primary velocity along the transverse direction becomes
periodic. These findings are new and are consistent with the experiments of [14].

3.3. Centreline velocity distribution

To find the velocity distribution along vertical direction at the center line,
the value ỹ = 0 is taken. Experimental data of Coleman [5] has been used to
validate the numerical solution at the central sections of narrow open channel
flow. Coleman did experiments in a flume which was 356 mm wide and 15 m
long. During the experiments, the energy slope S was kept to be 0.002 except
the last three test cases where S was 0.0022. The flow depth was nearly constant
and about 1.71 m. The temperature were in between 19.5 and 25.3◦C. Among
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40 test cases, test cases 1, 21 and 32 were performed in clear water flow and for
validation of the model these runs have been considered. In all test cases / RUNS
the aspect ratio is maintained as Ar ≈ 2. The computed horizontal velocity from
Eq. (2.17) is plotted in Fig. 8 and the values of the parameters are mentioned
inside the figures. Here the bed velocity ũa, u∗ (= u∗, local shear velocity) and
other values of parameters are considered from the experimental data. From the
figure it can be seen that the proposed model can predict the vertical distribution
of mean streamwise velocity well.
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Fig. 8. Comparison of centreline velocity distribution with experimental data of
Coleman [6].

Similarly, to test the velocity distribution along the vertical direction at the
center line in a wide open channel, experimental data of Vanoni [42] is consid-
ered. Vanoni [42] performed experiments in two series. The experiments were
done in a flume which is 0.8446 meter wide and 18.288 meter long with an ad-
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justable bed slope. For validation purpose, test cases 1, 18 and 20 have been
chosen. In all the test cases the aspect ratio varies from 5 to 11.90 and the
maximum velocity appears at the free surface. The computed velocity from Eq.
(5.17) is plotted in Fig. 9. Here also the values of parameters are given inside
the figures. From the comparison results it can be concluded that the proposed
model can predict the vertical velocity distribution in wide open channels well.
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Fig. 9. Comparison of centreline velocity distribution with experimental data of Vanoni [42].

Apart from the experimental data of Coleman [5] and Vanoni [42], the
present problem is also validated with the experimental data of Wang and
Qian [43] at the center line. Wang and Qian [43] performed a series of ex-
periments in a 30 cm wide, 40 cm high and 20 m long recirculating, tilting
flume. For a vertical velocity profile, 4 clear water experiments, namely CW1,
CW2, CW3 and CW4 were measured at center line. The computed velocity in
the vertical direction is plotted in Fig. 10 with the experimental data of Wang
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Fig. 10. Comparison of centreline velocity distribution with experimental data of Wang
and Qian [43].

and Qian [43] for three data sets CW1, CW2 and CW4. The values of required
parameters are mentioned within the figure. It is clear from Fig. 10 that the
result agrees very well with the experimental data.

4. Conclusions

The following conclusions can be drawn from the present study:

(i) Starting from the x-component of the widely known Reynolds Averaged
Navier Stokes (RANS) equation, the present study derives the two dimen-
sional distribution of streamwise velocity in a turbulent flow in which the
flow is considered steady and uniform along main (streamwise/longitu-
dinal) direction. Different expressions for eddy viscosity for vertical and
lateral (transverse) directions have been considered. Also secondary flow
along these two directions has been taken into account where these are the
functions of lateral and vertical coordinates.
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(ii) The proposed model for streamwise velocity distribution that comes by
solving a second order partial differential equation, is capable of describing
the dip-phenomenon i.e. the occurrence of maximum velocity below the
free surface which is mainly observed in narrow open channels.

(iii) From the proposed model, all the cross-sectional, transverse and centreline
vertical velocity distributions have been compared with existing experi-
mental data for validation purpose. Quite a good agreement is observed
everywhere proving the justification of the model in determining two di-
mensional streamwise velocity in open channels.

(iv) It is established that when the aspect ratio increases, the proposed model
gives good estimation of the transverse velocity and can also predict the pe-
riodic nature of it for wide open channels. Further it is found that for wide
open channels with counter rotating circular secondary currents, transverse
velocity decreases near the upflow zones and increases near the downflow
zones.

This work has a good scope for further extension. The governing equation
can be taken for an unsteady and nonuniform flow that are not considered here.
Apart from that, the model can include effect of sediment presence that will
make it applicable for sediment-laden flow.

5. Appendix

5.1. Numerical solution of the problem

In this section, the numerical solution of the problem using finite difference
approximation is discussed. The governing equation (Eq. (2.17)) to be solved
can be written as follows:

(5.1)
∂2ũ

∂ỹ2
+A

∂2ũ

∂z̃2
−B∂ũ

∂ỹ
+ C

∂ũ

∂z̃
+D = 0,

where

A = 6λz̃(1− z̃),(5.2)

B =
6

κ

wmax
ũ∗

cos(πz̃) sin(πỹ),(5.3)

C = 6λ(1− 2z̃) +
6

κ

wmax
ũ∗

sin(πz̃) cos(πỹ),(5.4)

D =
6gSH

κũ2∗
.(5.5)
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It can be seen from Eq. (5.1) that the governing equation is an elliptical partial
differential equation with variable coefficients. The computational domain is di-
vided into N number of equally spaced grid points with the grid size ∆ỹ =

Ly
N−1

in ỹ-direction and M number of equally spaced grid points with the grid size
∆z̃ = Lz

M−1 in z̃-direction. Ly and Lz are the lengths of the domain in ỹ and z̃
directions, respectively and the coordinates of the grid points are ỹi = ỹ1 + i∆ỹ
and z̃j = z̃1 + j∆z̃ in ỹ and z̃ directions, respectively. We discretize Eq. (5.1)
at (i, j)-th grid point using the standard second order finite difference schemes.
Finally, it can be written as:

(5.6)
ũi+1,j − 2ũi,j + ũi−1,j

∆ỹ2
+Ai,j

ũi,j+1 − 2ũi,j + ũi,j−1

∆z̃2

−Bi,j
ũi+1,j − ũi−1,j

2∆ỹ
+ Ci,j

ũi,j+1 − ũi,j−1
2∆z̃

+Di,j = 0,

where i and j represent the ith and jth grid points in ỹ and z̃ directions, respec-
tively and ũi,j is the numerical value of ũ(ỹ, z̃) at the point (i, j). The equation
Eq. (5.6) can be rearranged as:

(5.7)
(
Ai,j
∆z̃2

− Ci,j
2∆z̃

)
ũi,j−1 +

(
1

∆ỹ2
+
Bi,j
2∆ỹ

)
ũi−1,j − 2

(
1

∆ỹ2
+
Ai,j

∆z̃2

)
ũi,j

+

(
1

∆ỹ2
− Bi,j

2∆ỹ

)
ũi+1,j +

(
Ai,j
∆z̃2

+
Ci,j
2∆z̃

)
ũi,j+1 = −Di,j

for i = 2, 3, . . . , N − 1 and j = 2, 3, . . . ,M − 1,

where

Ai,j = 6λz̃j(1− z̃j),

Bi,j =
6

κ

wmax
ũ∗

cos(πz̃j) sin(πỹi),

Ci,j = 6λ(1− 2z̃j) +
6

κ

wmax
ũ∗

sin(πz̃j) cos(πỹj),

Di,j =
6gSH

κũ2∗
.

The boundary conditions given by Eqs. (2.18)-(2.21) can be discretized as,

ũi,1 = ũa, ũi,M = ũs for i = 1, 2, . . . , N,(5.8)
ũi,k+1 − ũi,k−1

2∆z̃
= 0 for i = 1, 2, . . . , N,(5.9)
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where k is the grid point at z̃ = z̃d.

(5.10)
−3ũ1,j + 4ũ2,j − ũ3,j

2∆ỹ
= 0 for j = 1, 2, . . . ,M

and

(5.11) ũN,j = ũw for j = 1, 2, . . . ,M,

respectively.
To avoid the computational difficulty, we transform the double index notation

by a single index notation, n = i+ (j− 1)N . Therefore, the discretized equation
Eq. (5.7), using the single index notation can be written as follows:

(5.12) α1ũn−N + α2ũn−1 + α3ũn + α4ũn+1 + α5ũn+N = −Dn

for n = N + 2, N + 3, . . . , 2N −1, 2N + 2, . . . , 3N −1, 3N + 2, . . . , (M −2)N −1,
(M − 2)N + 2, . . . , (M − 1)N − 1, where

α1 =

(
An
∆z̃2

− Cn
2∆z̃

)
, α2 =

(
1

∆ỹ2
+

Bn
2∆ỹ

)
,

α3 = −2

(
1

∆ỹ2
+

An

∆z̃2

)
, α4 =

(
1

∆ỹ2
− Bn

2∆ỹ

)
,

α5 =

(
An
∆z̃2

+
Cn

2∆z̃

)
.

The boundary conditions given by Eqs. (5.8)–(5.11) transformed to

ũn = ũa for n = 1, 2, . . . , N,

ũn = ũs for n = (M − 1)N + 1, (M − 1)N + 2, . . . ,MN,
(5.13)

ũn+N − ũn−N = 0 for n = i+ (k − 1)N, where i = 1, 2, . . . , N,(5.14)

− 3ũn + 4ũn+1 − ũn+2 = 0(5.15)
for n = 1, 1 +N, 1 + 2N, . . . , 1 + (M − 1)N,

ũn = ũw for n = N, 2N, . . . ,MN,(5.16)

respectively. Finally, we have an algebraic system of equations withMN number
of unknowns ũ1, ũ2, ũ3, . . . , ũMN , defined by

(5.17) P(MN×MN)U(MN×1) = Q(MN×1),
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where

P =



1 0 0 . . . . . . . . . . . . . . . . 0 0
0 1 0 . . . . . . . . . . . . . . . . 0 0
...
...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
...
...
...

0 0 0 . . . . 1 . . . . . . . . . . . 0 0
0 0 0 . . . . 0 −3 4 −1 . . . . . . . . 0 0
0 0 0 . α1 . . 0 α2 α3 α4 . . α5 . . . . . 0 0
...
...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
...
...
...

0 0 0 . . α1 . . . α2 α3 α4 0 0 . . α5 . . 0 0
0 0 0 . . . . . . 0 0 1 0 0 0 . . . . 0 0
0 0 0 . . . . . . 0 0 0 −3 4 1 . . . . 0 0
0 0 0 . . . . . . 0 0 0 α2 α3 α4 . . . . 0 0
...
...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
...
...
...

0 0 0 . . . . . . . . . . . . . . . . 1 0
0 0 0 . . . . . . . . . . . . . . . . 0 1



,(5.18)

U =



ũ1
ũ2
...
ũN
ũN+1

ũN+2
...

ũ2N−1
ũ2N
ũ2N+1

ũ2N+2
...

ũMN−1
ũMN



and Q =



ũa
ũa
...
ũa
0
−Dn
...
−Dn

ũw
0
−Dn
...
ũs
ũs



.

So, one can easily get the solution by solving Eq. (5.17).
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