Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this manuscript, we prove new extensions of Nashine, Wardowski, Feng-Liu, and Ćirić-type contractive inequalities using orbitally lower semi-continuous functions in an orbitally complete b-metric space. We accomplish new multivalued common fixed point results for two families of dominated set-valued mappings in an ordered complete orbitally b-metric space. Some new definitions and illustrative examples are given to validate our new results. To show the novelty of our results, applications are given to obtain the solution of nonlinear integral and fractional differential equations. Our results expand the hypothetical consequences of Nashine et al. (Feng–Liu-type fixed point result in orbital b-metric spaces and application to fractal integral equation, Nonlinear Anal. Model. Control. 26 (2021), no. 3, 522–533) and Rasham et al. (Common fixed point results for new Ciric-type rational multivalued-contraction with an application, J. Fixed Point Theory Appl. 20 (2018), no. 1, Paper No. 45).
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230161
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Department of Mathematics, University of Poonch Rawalakot, AJK, Pakistan
autor
- Department of Mathematics, University of Poonch Rawalakot, AJK, Pakistan
autor
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
autor
- Department of Mathematics, Allama Iqbal Open University, Islamabad, Pakistan
autor
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan
- Department of Medical Research, China Medical University, Taichung 40402, Taiwan
Bibliografia
- [1] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475–488.
- [2] L. B. Ćirić, Fixed point for generalized multivalued contractions, Mat. Vesn. 9 (1972), 265–272.
- [3] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317(1) (2006), 103–112.
- [4] G. Minak, M. Olgun, and I. Altun, A new approach to fixed point theorems for multivalued contractive mappings, Carpathian J. Math. 31 (2015), no. 2, 241–248.
- [5] A. Nicolae, Fixed point theorems for multi-valued mappings of Feng–Liu type, Fixed Point Theory 12 (2011), no. 1, 145–154.
- [6] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, and S. U. Khan, Common fixed point results for new Ciric-type rational multivalued -contraction with an application, J. Fixed Point Theory. Appl. 20 (2018), no. 1, Paper No. 45.
- [7] A. Bakhtin, The contraction mapping principle in almost quasi spaces, Funkts. Anal. 30 (1989), 26–37.
- [8] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 5 (1993), 5–11.
- [9] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (1998), no. 2, 263–276.
- [10] S. Czerwik, K. Dlutek, and S. L. Sing, Round-off stability of iteration procedures for set-valued operators in b-metric spaces, J. Nat. Phys. Sci. 11 (2007), 87–94.
- [11] N. Mlaiki, H. Aydi, N. Souayah, and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Maths. 6 (2018), Paper No. 194.
- [12] S. S. Aiadi, W. A. M. Othman, K. B. Wang, and N. Mlaiki, Fixed point theorems in controlled J−metric spaces, AIMS Maths. 8 (2023), 4753–4763.
- [13] S. Haque, F. Azmi, and N. Mlaiki, Fredholm type integral equation in controlled rectangular metric-like spaces, Symmetry. 14 (2022), no. 5, Paper No. 991.
- [14] W. Shatanawi, V. C. Rajic, S. Radenovic, and A. Al-Rawashdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory Appl. 2012 (2012), Paper No. 106.
- [15] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Paper No. 94.
- [16] M. Sgroi, and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), no. 7, 1259–1268.
- [17] A. Padcharoen, D. Gopal, P. Chaipunya, and P. Kumam, Fixed point and periodic point results for α-type -contractions in modular metric spaces, Fixed Point Theory Appl. 2016 (2016), Paper No. 39.
- [18] H. Aydi, E. Karapinar, and H. Yazidi, Modified F-contractions via α-admissible mappings and application to integral equations, Filomat. 31 (2017), no. 5, 1141–1148.
- [19] H. K. Nashine, L. K. Dey, R. W. Ibrahimc, and S. Radenović, Feng–Liu-type Fixed point result in orbital b-metric spaces and application to fractal integral equation, Nonlinear Anal. Model. Control. 26 (2021), no. 3, 522–533.
- [20] T. Rasham, A. Shoaib, C. Park, R. P. Agarwal, and H. Aydi, On a pair of fuzzy mappings in modular-like metric spaces with applications, Adv. Difference Equ. 2021 (2021), Paper No. 245.
- [21] T. Rasham, A. Shoaib, G. Marino, B. A. S. Alamri, and M Arshad, Sufficient conditions to solve two systems of integral equations via fixed point results, J. Ineq. Appl. 2019 (2019), Paper No. 182.
- [22] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Aydi, and H. Alsamir, Fixed point results for multi-valued contraction in b-metric spaces and an application, Maths. 7 (2019), no. 2, 132.
- [23] H. K. Nashine and Z. Kadelburg, Cyclic generalized ϕ-contractions in b-metric spaces and an application to integral equations, Filomat. 28 (2014), no. 10, 2047–2057.
- [24] T. Rasham, A. Shoaib, Q. Zaman, and M. S. Shabbir, Fixed point results for a generalized-contractive mapping on closed ball with application, Math. Sci. 14 (2020), no. 2, 177–184.
- [25] T. Rasham, A. Asif, H. Aydi, and M. D. La Sen, On pairs of fuzzy dominated mappings and applications, Adv. Difference Equ. 2021 (2021), Paper No. 417.
- [26] B. Alqahtani, H. Aydi, E. Karapınar, and V. Rakočević, A Solution for Volterra fractional integral equations by hybrid contractions, Math. 7 (2019), no. 8, Paper No. 694.
- [27] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, and S. U. Khan, Common fixed point results for new Ciric-type rational multivalued F-contraction with an application, J. Fixed Point Theory. Appl. 20 (2018), no. 1, Paper No. 45.
- [28] M. Sgroi and C. Vetro, Multi-valued -contractions and the solution of certain functional and integral equations, Filomat 27 (2013), no. 7, 1259–1268.
- [29] M. Nazam, C. Park, and M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Diffference Equ. 2021 (2021), Paper No. 247.
- [30] E. Karapınar, A. Fulga, M. Rashid, L. Shahid, and H. Aydi, Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations, Math. 7 (2019), Paper No. 444.
- [31] N. Tuan, H. Mohammadi, and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solit. Fractals. 140 (2020), 110–107.
- [32] Ö. Acar, G. Durmaz, and G. Minak, Generalized multivalued F -contractions on complete metric spaces, Bull. Iranian Math. Soc. 40 (2014), 1469–1478.
- [33] R. P. Agarwal, U. Aksoy, E. Karapınar, and I. M. Erhan, F -contraction mappings on metric-like spaces in connection with integral equations on time scales, Rev. R. Acad. Cienc. Exact Físicas. Nat. Ser. A. Mat. RACSAM 114 (2020), no. 3, Paper No. 147.
- [34] J. Ahmad, A. Al-Rawashdeh, and A. Azam, Some new fixed point theorems for generalized contractions in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), Paper No. 80.
- [35] H. H. Alsulami, E. Karapinar, and H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Spaces. 2015 (2015), Article ID 270971.
- [36] E. Karapınar, M. A. Kutbi, H. Piri, and D. O’Regan, Fixed points of conditionally F-contractions in complete metric-like spaces, Fixed point Theory and Appl. 2015 (2015), Paper No. 126.
- [37] T. Rasham, P. Agarwal, L. S. Abbasi, and S. Jain, A study of some new multivalued fixed point results in a modular like metric space with graph, The Journal of Anal. 30 (2022), 833–844.
- [38] T. Rasham, G. Marino, and A. Shoaib, Fixed point for a pair of F-dominated contractive mappings in rectangular b-metric spaces with graph, Math. 7 (2019), no. 10, Paper No. 884.
- [39] S. U. Khan, M. Arshad, T. Rasham, and A. Shoaib, Some new common fixed points of generalized rational contractive mappings in dislocated metric spaces with application, Honam Math. J. 39 (2017), no. 2, 161–174.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75e8f58d-8e28-4bed-971e-eef5e88dff33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.