PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Dyes by Adsorption Process Using Date Pits as Material Environmentally Friendly

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is based on the use of a natural material in the adsorption process to remove organic pollutants. The objective is to assess its effectiveness in adsorbing the organic pollutant MB from an aqueous solution, while operating in an open system. The DP bioadsorbent was characterized using FTIR and SEM. To determine their effect on adsorption efficiency, a number of variables were examined, including contact time, concentration of pollutant MB, adsorbent mass, pH, temperature, and adsorbent particle size. The effect of these variables on adsorption efficiency shows that a removal rate of 92.66% is achieved under optimum conditions, including a contact time of 35 minutes, a concentration of pollutant MB of 22.5 mg·l-1, an adsorbent mass (mDP) of 1.1 g·l-1 and a solution pH of 5.6. In addition, a progressive decrease in adsorption efficiency is observed with increasing temperature and adsorbent mass. On the other hand, this efficiency increases with increasing a concentration of pollutant MB. Three popular models, the Freundlich, Langmuir, and Dubin-Radushkevich models, have been used to examine the adsorption isotherms of the MB dye on DP. With a correlation factor of 0.98, it was discovered that MB adsorption monitored by the Freundlich isotherm. The Langmuir and Dubinin-Radushkevich models, however, do not adequately describe the data. The kinetic results were studied using the pseudo-first-order and pseudo-second-order equations, and show that MB dye adsorption on DP (adsorbent) follows the pseudo-second-order model. Also estimated were thermodynamic parameters such as (ΔH°), (ΔS°), (ΔG°), enthalpy, entropy, Gibbs free energy respectively to anticipate the character of adsorption. The results indicate that the adsorption process of MB on the bioadsorbent is exothermic. The results derived from the ΔG° values lead to the conclusion that the adsorption of MB occurs spontaneously.
Słowa kluczowe
Twórcy
  • Laboratory of Engineering, Molecular Organic Materials and Environment, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
  • Laboratory of Engineering, Molecular Organic Materials and Environment, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
  • Laboratory of Biotechnology of Environment, Agroalimentary, Health, University Sidi Mohamed Ben Abdelah, Faculty of Sciences, Fez 30000, Morocco
  • Laboratory of Engineering, Molecular Organic Materials and Environment, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
  • Laboratory of Engineering, Molecular Organic Materials and Environment, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
autor
  • Laboratory of Engineering, Molecular Organic Materials and Environment, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
Bibliografia
  • 1. Abdallah, M., Hijazi, A., Hamieh, M., Alameh, M., Toufaily, J., Rammal, H. 2016. Adsorption study of Methylene Blue on biomaterial using cactus. J. Mater. Environ. Sci. 7, 4036–4048.
  • 2. Adachi, A., El Ouadrhiri, F., Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M.H., Bayram, R., Mohamed, H.R.H., Peluso, I., Eloutassi, N., Lahkimi, A. 2022. Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro fenton process: Application of optimization. Catalysts 12, 1–12. https://doi.org/10.3390/catal12060665
  • 3. Adachi, A., Soujoud, R., El Ouadrhiri, F., Tarik, M., Hmamou, A., Eloutassi, N., Lahkimi, A. 2023. Cactus and holm oak acorn for efficient textile wastewater treatment by coagulation-flocculation process optimization using box-benhken design. J. Ecol. Eng. 24, 315–328. https://doi.org/10.12911/22998993/162784
  • 4. Ahmad, A.Y., Al-Ghouti, M.A., Khraisheh, M., Zouari, N. 2022. Insights into the removal of lithium and molybdenum from groundwater by adsorption onto activated carbon, bentonite, roasted date pits, and modified-roasted date pits. Bioresour. Technol. Reports 18, 101045. https://doi.org/10.1016/j.biteb.2022.101045
  • 5. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G.A., Soomro, G.A., Qureshi, N., Iqbal, M., Nazir, A. 2019. Kinetics and equilibrium studies of Eriobotrya japonica: A novel adsorbent preparation for dyes sequestration. Zeitschrift fur Phys. Chemie 233, 1469–1484. https://doi.org/10.1515/zpch-2018–1201
  • 6. Aisha MuthanaAlasadi1, F.I.A.M. 2019. Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chem. Int. ()- 5(), 258–268.
  • 7. Ait Hmeid, H. 2021. Moroccan Journal of Chemistry Adsorption of a basic dye, Methylene Blue, in aqueous solution on bentonite DAOUDI (d). L. Mor. J. Chem 9, 416–433.
  • 8. Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G., Ahmad, M.N.M. 2010. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176, 510–520. https://doi.org/10.1016/j.jhazmat.2009.11.059
  • 9. Alakhras, F., Alhajri, E., Haounati, R., Ouachtak, H., Addi, A.A., Saleh, T.A. 2020. A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites. Surfaces and Interfaces 20, 100611. https://doi.org/10.1016/j.surfin.2020.100611
  • 10. Ali, N.S., Jabbar, N.M., Alardhi, S.M., Majdi, H.S., Albayati, T.M. 2022. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies. Heliyon 8, e10276. https://doi.org/10.1016/j.heliyon.2022.e10276
  • 11. Alipour, M., Vosoughi, M., Mokhtari, S.A., Sadeghi, H., Rashtbari, Y., Shirmardi, M., Azad, R. 2021. Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the Box–Behnken design. Int. J. Environ. Anal. Chem. 101, 758–777. https://doi.org/10.1080/03067319.2019.1671378
  • 12. Angove, M.J., Johnson, B.B., Wells, J.D., Box, P.O. 1997. SURFACES Adsorption of cadmium ( II ) on kaolinite 126, 137–147.
  • 13. Arami, M., Limaee, N.Y., Mahmoodi, N.M., Tabrizi, N.S. 2005. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. J. Colloid Interface Sci. 288, 371–376. https://doi.org/10.1016/j.jcis.2005.03.020
  • 14. Awasthi, A., Jadhao, P., Kumari, K. 2019. Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN Appl. Sci. 1, 1–21. https://doi.org/10.1007/s42452–019–0858–9
  • 15. Ayawei, N., Ekubo, A.T., Wankasi, D., Dikio, E.D. 2015. Adsorption of Congo Red by Ni/Al-CO3 Equilibrium, thermodynamic and kinetic studies. Oriental Journal of Chemistry 31(3), 1307-1318.
  • 16. Banat, F., Al-Asheh, S., Al-Makhadmeh, L. 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem. 39, 193–202. https://doi.org/10.1016/S0032–9592(03)00065–7
  • 17. Bayomie, O.S., Kandeel, H., Shoeib, T., Yang, H., Youssef, N., El-Sayed, M.M.H. 2020. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598–020–64727–5
  • 18. Boparai, H.K., Joseph, M., Carroll, D.M.O. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029
  • 19. Bouchelta, C., Medjram, M.S., Bertrand, O., Bellat, J.P. 2008. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 82, 70–77. https://doi.org/10.1016/j.jaap.2007.12.009
  • 20. Chakma, S., Moholkar, V.S. 2016. Synthesis of bimetallic oxides nanotubes for fast removal of dye using adsorption and sonocatalysis process. J. Ind. Eng. Chem. 37, 84–89. https://doi.org/10.1016/j.jiec.2016.03.009
  • 21. Dąbrowski A. 2001. Adsorption – from theory to practice. Advances in Colloid and Interface Science 93(1–3), 135-224.
  • 22. Diarra, M. 2019. Etude Cinetique De La Photodegradation Du Colorant Red 6 En Solution Aqueuse. Int. J. Adv. Res. 7, 124–130. https://doi.org/10.21474/ijar01/9638
  • 23. Douara, N., Bestani, B., Benderdouche, N., Duclaux, L. 2016. Sawdust-based activated carbon ability in the removal of phenol-based organics from aqueous media. Desalin. Water Treat. 57, 5529–5545. https://doi.org/10.1080/19443994.2015.1005151
  • 24. Dra, A., El Gaidoumi, A., Tanji, K., Chaouni Benabdallah, A., Taleb, A., Kherbeche, A. 2019. Characterization and quantification of heavy metals in oued sebou sediments. Sci. World J. 2019. https://doi.org/10.1155/2019/7496576
  • 25. Dutta, A. 2017. Fourier transform infrared spectroscopy. In: Spectroscopic Methods for Nanomaterials Charaterization. Elsevier Inc. pp. 73–93. https://doi.org/10.1016/B978–0-323–46140–5.00004–2
  • 26. El Ouadrhiri, F., Abdu Musad Saleh, E., Husain, K., Adachi, A., Hmamou, A., Hassan, I., Mostafa Moharam, M., Lahkimi, A. 2023. Acid assistedhydrothermal carbonization of solid waste from essential oils industry: Optimization using I-optimal experimental design and removal dye application. Arab. J. Chem. 16. https://doi.org/10.1016/j.arabjc.2023.104872
  • 27. El Qada, E.N., Allen, S.J., Walker, G.M. 2006. Adsorption of basic dyes onto activated carbon using microcolumns. Ind. Eng. Chem. Res. 45, 6044–6049. https://doi.org/10.1021/ie060289e
  • 28. Fan, X., Parker, D.J., Smith, M.D. 2003. Adsorption kinetics of fluoride on low cost materials 37, 4929–4937. https://doi.org/10.1016/j.watres.2003.08.014
  • 29. Gómez, V., Larrechi, M.S., Callao, M.P. 2007. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69, 1151–1158. https://doi.org/10.1016/j.chemosphere.2007.03.076
  • 30. Hassan, S.S., Al-Ghouti, M.A., Abu-Dieyeh, M., McKay, G. 2020. Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. J. Environ. Chem. Eng. 8, 103593. https://doi.org/10.1016/j.jece.2019.103593
  • 31.Javid, N., Malakootian, M. 2017. Removal of bisphenol a from aqueous solutions by modified-carbonized date pits by zno nano-particles. Desalin. Water Treat. 95, 144–151. https://doi.org/10.5004/dwt.2017.21592
  • 32.Javid, N., Nasiri, A., Malakootian, M. 2019. Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles. Desalin. Water Treat. 141, 140–148. https://doi.org/10.5004/dwt.2019.23428
  • 33. Krishnamoorthy, R., Govindan, B., Banat, F., Sagadevan, V., Purushothaman, M., Show, P.L. 2019. Date pits activated carbon for divalent lead ions removal. J. Biosci. Bioeng. 128, 88–97. https://doi.org/10.1016/j.jbiosc.2018.12.011
  • 34. Ledakowicz, S., Solecka, M., Zylla, R. 2001. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol. 89, 175–184. https://doi.org/10.1016/S0168–1656(01)00296–6
  • 35. Li, J., Hu, J., Sheng, G., Zhao, G., Huang, Q. 2009. Colloids and Surfaces A : Physicochemical and engineering aspects effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu (II) from aqueous solution to GMZ bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 349, 195–201. https://doi.org/10.1016/j.colsurfa.2009.08.018
  • 36. Miyah, Y., Idrissi, M., Zerrouq, F. 2015. Study and modeling of the kinetics methylene blue adsorption on the clay adsorbents (Pyrophillite, Calcite). J. Mater. Environ. Sci. 6, 699–712.
  • 37. Narasimharao, K., Al-Thabaiti, S., Rajor, H.K., Mokhtar, M., Alsheshri, A., Alfaifi, S.Y., Siddiqui, S.I., Abdulla, N.K. 2022. Fe3O4@date seeds powder: A sustainable nanocomposite material for wastewater treatment. J. Mater. Res. Technol. 18, 3581–3597. https://doi.org/10.1016/j.jmrt.2022.03.176
  • 38. Ouachtak, H., Akhouairi, S., Haounati, R., Addi, A.A., Jada, A., Taha, M.L., Douch, J. 2020. 3,4-dihydroxybenzoic acid removal from water by goethite modified natural sand column fixed-bed: Experimental study and mathematical modeling. Desalin. Water Treat. 194, 439–449. https://doi.org/10.5004/dwt.2020.25562
  • 39. Pal, D.B., Singh, A., Jha, J.M., Srivastava, N., Hashem, A., Alakeel, M.A., Abd_Allah, E.F., Gupta, V.K. 2021. Low-cost biochar adsorbents prepared from date and delonix regia seeds for heavy metal sorption. Bioresour. Technol. 339, 125606. https://doi.org/10.1016/j.biortech.2021.125606
  • 40. Pandian, C.J., Palanivel, R., Dhananasekaran, S. 2015. Chinese Journal of Chemical Engineering Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. CJCHE 23, 1307–1315. https://doi.org/10.1016/j.cjche.2015.05.012
  • 41.Rahman, M.S., Kasapis, S., Al-Kharusi, N.S.Z., Al-Marhubi, I.M., Khan, A.J. 2007. Composition characterisation and thermal transition of date pits powders. J. Food Eng. 80, 1–10. https://doi.org/10.1016/j.jfoodeng.2006.04.030
  • 42. Rahmani, A., Mousavi, H.Z., Fazli, M. 2010. Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253, 94–100. https://doi.org/10.1016/j.desal.2009.11.027
  • 43. Saad, E.M., Mansour, R.A., El-Asmy, A., El-Shahawi, M.S. 2008. Sorption profile and chromatographic separation of uranium (VI) ions from aqueous solutions onto date pits solid sorbent. Talanta 76, 1041–1046. https://doi.org/10.1016/j.talanta.2008.04.065
  • 44. Saltalı, K., Sarı, A., Aydın, M. 2007. Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. Journal of Hazardous Materials 141(6), 258–263. https://doi.org/10.1016/j.jhazmat.2006.06.124
  • 45. Sari, A., Tuzen, M., Citak, D., Soylak, M. 2007. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials 149, 283–291. https://doi.org/10.1016/j.jhazmat.2007.03.078
  • 46. Senthilkumaar, S., Varadarajan, P.R., Porkodi, K., Subbhuraam, C.V. 2005. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Colloid and Interface Science 284, 78–82. https://doi.org/10.1016/j.jcis.2004.09.027
  • 47. Shan, R. ran, Yan, L. guo, Yang, Y. ming, Yang, K., Yu, S. jun, Yu, H. qin, Zhu, B. cun, Du, B. 2015. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide. J. Ind. Eng. Chem. 21, 561–568. https://doi.org/10.1016/j.jiec.2014.03.019
  • 48. Singh, T.S., Pant, K.K. 2004. Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Separation and Purification Technology 36, 139–147. https://doi.org/10.1016/S1383–5866(03)00209–0
  • 49. Soares, O.S.G.P., Órfão, J.J.M., Portela, D., Vieira, A., Pereira, M.F.R. 2006. Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. J. Hazard. Mater. 137, 1664–1673. https://doi.org/10.1016/j.jhazmat.2006.05.006
  • 50. Susanti, R.F., Arie, A.A., Kristianto, H., Erico, M., Kevin, G., Devianto, H. 2019. Activated carbon from citric acid catalyzed hydrothermal carbonization and chemical activation of salacca peel as potential electrode for lithium ion capacitor’s cathode. Ionics (Kiel). 25, 3915–3925. https://doi.org/10.1007/s11581–019–02904-x
  • 51. Tan, K.B., Vakili, M., Horri, B.A., Poh, P.E., Abdullah, A.Z., Salamatinia, B. 2015. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242. https://doi.org/10.1016/j.seppur.2015.07.009
  • 52. Tor, A., Cengeloglu, Y. 2006. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard. Mater. 138, 409–415. https://doi.org/10.1016/j.jhazmat.2006.04.063
  • 53. Vijayaraghavan, K., Padmesh, T.V.N., Palanivelu, K., Velan, M. 2006. Biosorption of nickel ( II ) ions onto Sargassum wightii : Application of two-parameter and three-parameter isotherm models 133, 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  • 54. Wang, H., Gong, G., Zhou, H., Wang, W. 2016. Steady flow torques in a servo motor operated rotary directional control valve. Energy Convers. Manag. 112, 1–10. https://doi.org/10.1016/j.enconman.2015.11.054
  • 55. Xing, J., Huang, J., Wang, X., Yang, F., Bai, Y., Li, S., Zhang, X. 2023. Removal of low-concentration tetracycline from water by a two-step process of adsorption enrichment and photocatalytic regeneration. J. Environ. Manage. 343, 118210. https://doi.org/10.1016/j.jenvman.2023.118210
  • 56. Gui Chen Y., Min Ye W., Min Yang X., Yue Deng F., He Y. 2011. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environmental Earth Sciences 64, 329–336. https://doi.org/10.1007/s12665–010–0850–6
  • 57. Yuvaraja, G., Zheng, N.C., Pang, Y., Su, M., Chen, D.Y., Kong, L.J., Mehmood, S., Subbaiah, M.V., Wen, J.C. 2020. Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Int. J. Biol. Macromol. 148, 887–897. https://doi.org/10.1016/j.ijbiomac.2020.01.042
  • 58. Zhang, Z., Wang, W., Kang, Y., Zong, L., Wang, A. 2016. Tailoring the properties of palygorskite by various organic acids via a one-pot hydrothermal process: A comparative study for removal of toxic dyes. Appl. Clay Sci. 120, 28–39. https://doi.org/10.1016/j.clay.2015.11.019
  • 59. Zhou, F., Cheng, Y., Gan, L., Chen, Z., Megharaj, M., Naidu, R. 2014. Burkholderia vietnamiensis C09V as the functional biomaterial used to remove crystal violet and Cu(II). Ecotoxicol. Environ. Saf. 105, 1–6. https://doi.org/10.1016/j.ecoenv.2014.03.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75de2c0a-5c9f-4e43-af2b-ca7556bdf4b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.