PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and assessment of energy efficiency of passenger lifts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy performance and operational characteristics of the passenger lift investigated in this study were based on energy consumption data registered throughout the normal duty cycle. An overview is provided of available methods employed to evaluate the energy uptake of passenger lifts, relying mostly on energy consumption measurements taken on a real object over an idealised reference duty cycle. Measurement data were used to determine the energy efficiency rating of the lift during the trip cycle and in the standby mode and the energy demand levels, which are then to be compared with measurement results obtained under the service conditions.
Twórcy
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Rope Transport, A. Mickiewicza Av. 30 (B2-p12), 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Rope Transport, A. Mickiewicza Av. 30 (B2-p12), 30-059 Kraków, Poland
Bibliografia
  • 1. Adoption of the Paris agreement, United Nations, December 2015.
  • 2. Al-Sharif L. Lift Energy Consumption: General Overview (1974-2001). Elevator World, 52 (10), 2004, 61-67.
  • 3. Almeida A., Hirzel S., Patrão C., Fong J., Dütschke. Energy-efficient elevators and escalators in Europe: An analysis of energy efficiency potentials and policy measures. Energy and Buildings, 47, 2012, 151-158.
  • 4. Almeida A., Araujo N., Fong J., Nunes U., Patrao C., et al. E4 – Energy Efficient Elevators and Escalators.Grant agreement no. EIE/07/111/ SI2.466703, 2010.
  • 5. Barney G. Method to calculate the energy consumption of lifts. Elevatori, 2013, Sept./Oct, 36-41.
  • 6. Conclusions on 2030 Climate and Energy Policy FrameworkSN 79/14, European Council, 2014
  • 7. Doolaard D.A. Energy consumption of different types of lift drive system. Elevator Technology 4, 1992, 77-85.
  • 8. Funai K., van Schijndel-de Nooij M., van Nunen E. Influence of Elevator Acceleration Induced Loading on Injury Levels, Elevator World, 58 Issue 5, 2010, 86-98.
  • 9. Herrera I., Kaczmarczyk S. The assessment of vibration absorption capacity of elevator’s passengers. Journal of Physics: Conference Series, 2009; 181, No.1: 1-8.
  • 10. Lonkwic P., Gardyński L. Testing Polymer Rollers Memory in the Context of Passenger Lift Car Comfort, Journal of Vibroengineering, 1, 2014, 225-230.
  • 11. Lonkwic P., Syta A. Nonlinear analysis of braking delay dynamics for the progressive gears in variable operating conditions. JOURNAL OF VIBROENGINEERING Volume: 18 Issue: 7 Pages: 4401-4408.
  • 12. Lonkwic P, Różyło P, Dębski H. Analysis of the loading impact on the stresses value of the progressive gear body with the use of finite-element method. EksploatacjaiNiezawodnosc – Maintenance and Reliability, 17(4), 2015, 542–548.
  • 13. Lonkwic P., Szydlo K., Molski S. The impact of progressive gear geometry on the breaking distance length under changeable operating conditions, Advances in Science and Technology-Research Journal. Volume 10 (29), Pages: 161-167.
  • 14. Lonkwic P.,Szydło K. Reduction of the cabin acoustic emission by the selection of an optimum stiffening method for the cabin panels. Journal of Measurements in Engineering, Volume: 4 (2), Pages: 95-102.
  • 15. Lorente, A.M., Gomez, A., Diaz, D., Arteche, F. State of the Art Calculation Methods for Elevator Energy Consumption. Elevator Technology, 18, 2010, 225-238.
  • 16. Magiera T., Kułaga P., Wójcik K. Analysis and Assessment of Dynamic Response to Passengers During Lift Emergency Braking. Advances in Science and Technology Research Journal. 2017;11(3):164-171.
  • 17. Nipkow J. Electricity consumption and efficiency potentials of lifts. Report of Swiss agency for efficient energy use S.A.F.E. Zurich: HTW Chur University of Applied Sciences 2005.
  • 18. PN-EN ISO 25745-1:2013. Charakterystyka energetyczna dźwigów, schodów i chodników ruchomych - Część 1: Pomiar zużycia energii i weryfikacja.
  • 19. PN-EN ISO 25745-2:2015. Efektywność energetyczna dźwigów, schodów i chodników ruchomych -- Część 2: Obliczanie energii i klasyfikacja dźwigów (wind).
  • 20. Protokół z Kioto do Ramowej konwencji Narodów Zjednoczonych w sprawie zmian klimatu, sporządzony w Kioto dnia 11 grudnia 1997 r., Dziennik Ustaw 2005, nr 203, poz. 1684.
  • 21. Sachs H.M. Opportunities for Elevator Energy Efficiency Improvements. American Council for on Energy-Efficient Economy, Washington, DC, 2005.
  • 22. Schroeder J. The energy consumption of elevators A comparative Analysis. Elevator Technology, 11, 1980, 28-31.
  • 23. Schroeder J.The energy consumption of elevators. Elevator Technology 1986.
  • 24. SchroederJ.Energy Consumption and Power Requirements of Elevators. Elevator World March 1986.
  • 25. Schroeder J.Second Century of the Skyscraper Council on Tall Buildings and Urban Habitat, Energy Consumption and Power Requirements of Elevators. (pp. 621–627), 1988 Springer, Boston, MA.
  • 26. SIA 380/4 Elektrische Energie im Hochbau.
  • 27. VDI 4707 Part 1. Energy Efficiency Label for Elevators.
  • 28. VDI 4707 Part 2. Energy Efficiency Label for Elevators – components.
  • 29. White L.E. Energy consumption: Hydraulic elevators and traction elevators. Elevator World April 1984.
  • 30. Wolszczak P., Łygas K., Lonkwic P., Molski Sz., Litak G. Braking deceleration variability of progressive safety gears using statistical and wavelet analyses. Measurement, Volume: 110, Pages: 90-97.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75dbc5c6-059d-4bfa-a61e-b5b355054029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.